Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yun Jiao is active.

Publication


Featured researches published by Yun Jiao.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration

Haeman Jang; David A. Boltz; K. M. Sturm-Ramirez; Kennie R. Shepherd; Yun Jiao; Robert G. Webster; Richard J. Smeyne

One of the greatest influenza pandemic threats at this time is posed by the highly pathogenic H5N1 avian influenza viruses. To date, 61% of the 433 known human cases of H5N1 infection have proved fatal. Animals infected by H5N1 viruses have demonstrated acute neurological signs ranging from mild encephalitis to motor disturbances to coma. However, no studies have examined the longer-term neurologic consequences of H5N1 infection among surviving hosts. Using the C57BL/6J mouse, a mouse strain that can be infected by the A/Vietnam/1203/04 H5N1 virus without adaptation, we show that this virus travels from the peripheral nervous system into the CNS to higher levels of the neuroaxis. In regions infected by H5N1 virus, we observe activation of microglia and alpha-synuclein phosphorylation and aggregation that persists long after resolution of the infection. We also observe a significant loss of dopaminergic neurons in the substantia nigra pars compacta 60 days after infection. Our results suggest that a pandemic H5N1 pathogen, or other neurotropic influenza virus, could initiate CNS disorders of protein aggregation including Parkinsons and Alzheimers diseases.


Human Molecular Genetics | 2010

Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated α-synuclein gene mutations precede central nervous system changes

Yien-Ming Kuo; Zhishan Li; Yun Jiao; Nathalie Gaborit; Amar K. Pani; Bonnie M. Orrison; Benoit G. Bruneau; Benoit I. Giasson; Richard J. Smeyne; Michael D. Gershon; Robert L. Nussbaum

Parkinson disease (PD) is a neurodegenerative disease with motor as well as non-motor signs in the gastrointestinal tract that include dysphagia, gastroparesis, prolonged gastrointestinal transit time, constipation and difficulty with defecation. The gastrointestinal dysfunction commonly precedes the motor symptoms by decades. Most PD is sporadic and of unknown etiology, but a fraction is familial. Among familial forms of PD, a small fraction is caused by missense (A53T, A30P and E46K) and copy number mutations in SNCA which encodes alpha-synuclein, a primary protein constituent of Lewy bodies, the pathognomonic protein aggregates found in neurons in PD. We set out to develop transgenic mice expressing mutant alpha-synuclein (either A53T or A30P) from insertions of an entire human SNCA gene as models for the familial disease. Both the A53T and A30P lines show robust abnormalities in enteric nervous system (ENS) function and synuclein-immunoreactive aggregates in ENS ganglia by 3 months of age. The A53T line also has abnormal motor behavior but neither demonstrates cardiac autonomic abnormalities, olfactory dysfunction, dopaminergic neurotransmitter deficits, Lewy body inclusions or neurodegeneration. These animals recapitulate the early gastrointestinal abnormalities seen in human PD. The animals also serve as an in vivo system in which to investigate therapies for reversing the neurological dysfunction that target alpha-synuclein toxicity at its earliest stages.


Proceedings of the National Academy of Sciences of the United States of America | 2007

GSTπ expression mediates dopaminergic neuron sensitivity in experimental parkinsonism

Michelle Smeyne; Justin D. Boyd; Kennie R. Shepherd; Yun Jiao; Brooks B. Pond; Matthew Hatler; Roland Wolf; Colin J. Henderson; Richard J. Smeyne

The cause of 95% of Parkinsons disease (PD) cases is unknown. It is hypothesized that PD arises from an interaction of free-radical-generating agents with an underlying genetic susceptibility to these compounds. Here we use the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of parkinsonism to examine the role of a dual function protein, GSTπ, in dopaminergic neuron death. GSTπ is the only GST family member expressed in substantia nigra neurons. GSTπ reduction by pharmacological blockade, RNA inhibition, and gene targeting increases sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, suggesting that differential expression of GSTπ contributes to the sensitivity to xenobiotics in the substantia nigra and may influence the pathogenesis of reactive oxygen species-induced neurological disorders including PD.


Brain Research | 2010

Exercise protects against MPTP-induced neurotoxicity in mice.

Kimberly M. Gerecke; Yun Jiao; Amar K. Pani; Vishwajeeth Pagala; Richard J. Smeyne

Exercise has been shown to be potently neuroprotective in several neurodegenerative models, including 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) model of Parkinsons disease (PD). In order to determine the critical duration of exercise necessary for DA neuroprotection, mice were allowed to run for either 1, 2 or 3months prior to treatment with saline or MPTP. Quantification of DA neurons in the SNpc show that mice allowed to run unrestricted for 1 or 2months lost significant numbers of neurons following MPTP administration as compared to saline treated mice; however, 3months of exercise provided complete protection against MPTP-induced neurotoxicity. To determine the critical intensity of exercise for DA neuroprotection, mice were restricted in their running to either 1/3 or 2/3 that of the full running group for 3months prior to treatment with saline or MPTP. Quantification of DA neurons in the SNpc show that mice whose running was restricted lost significant numbers of DA neurons due to MPTP toxicity; however, the 2/3 running group demonstrated partial protection. Neurochemical analyses of DA and its metabolites DOPAC and HVA show that exercise also functionally protects neurons from MPTP-induced neurotoxicity. Proteomic analysis of SN and STR tissues indicates that 3months of exercise induces changes in proteins related to energy regulation, cellular metabolism, the cytoskeleton, and intracellular signaling events. Taken together, these data indicate that exercise potently protects DA neurons from acute MPTP toxicity, suggesting that this simple lifestyle element may also confer significant protection against developing PD in humans.


PLOS ONE | 2012

Methylphenidate Exposure Induces Dopamine Neuron Loss and Activation of Microglia in the Basal Ganglia of Mice

Shankar Sadasivan; Brooks B. Pond; Amar K. Pani; Chunxu Qu; Yun Jiao; Richard J. Smeyne

Background Methylphenidate (MPH) is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT) and the norepinephrine transporter (NET), resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a “cognitive enhancer” and as an alternative to other psychostimulants. Here, we investigate whether chronic or acute administration of MPH in mice at either 1 mg/kg or 10 mg/kg, affects cell number and gene expression in the basal ganglia. Methodology/Principal Findings Through the use of stereological counting methods, we observed a significant reduction (∼20%) in dopamine neuron numbers in the substantia nigra pars compacta (SNpc) following chronic administration of 10 mg/kg MPH. This dosage of MPH also induced a significant increase in the number of activated microglia in the SNpc. Additionally, exposure to either 1 mg/kg or 10 mg/kg MPH increased the sensitivity of SNpc dopaminergic neurons to the parkinsonian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Unbiased gene screening employing Affymetrix GeneChip® HT MG-430 PM revealed changes in 115 and 54 genes in the substantia nigra (SN) of mice exposed to 1 mg/kg and 10 mg/kg MPH doses, respectively. Decreases in the mRNA levels of gdnf, dat1, vmat2, and th in the substantia nigra (SN) were observed with both acute and chronic dosing of 10 mg/kg MPH. We also found an increase in mRNA levels of the pro-inflammatory genes il-6 and tnf-α in the striatum, although these were seen only at an acute dose of 10 mg/kg and not following chronic dosing. Conclusion Collectively, our results suggest that chronic MPH usage in mice at doses spanning the therapeutic range in humans, especially at prolonged higher doses, has long-term neurodegenerative consequences.


Glia | 2005

Glia cell number modulates sensitivity to MPTP in mice

Michelle Smeyne; Yun Jiao; Kennie R. Shepherd; Richard J. Smeyne

Free radical damage has been shown to play a significant role in the pathogenesis of a number of neurodegenerative diseases including Parkinsons disease. One model of experimental parkinsonism is the loss of substantia nigra cells following administration of MPTP. Previously, it has been shown that a number of inbred strains of mice have differential responses to this toxin, and this difference is dependent on glial cells. In this study, the number of glial cells in the substantia nigra pars compacta of C57Bl/6J (MPTP‐sensitive) and Swiss Webster (MPTP‐resistant) strains of mice was examined. The C57Bl/6J mice have an approximately 50% lower number of GFAP+ and S‐100β glial cells than the Swiss Webster mice. C57Bl/6J mice have a 25% increased number of resident nonactivated microglial cells. To determine whether this difference in cell number has functional significance, we used an in vitro SN culture system that allowed us to manipulate the number of glial cells. When C57Bl/6 neurons were grown on a glial mat plated with twice the number of cells, we were able to rescue the MPTP‐sensitive neurons from toxin‐induced cell death. This suggests that the number of glial cells in the SNpc may be an important factor in the survival of dopaminergic neurons following exposure to xenobiotics.


Brain Research | 2007

Response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) differs in mouse strains and reveals a divergence in JNK signaling and COX-2 induction prior to loss of neurons in the substantia nigra pars compacta

Justin D. Boyd; Haeman Jang; Kennie R. Shepherd; Ciaran J. Faherty; Sally Slack; Yun Jiao; Richard J. Smeyne

Parkinsons disease (PD) is a neurodegenerative disease whose hallmark pathological features include a selective loss of dopaminergic neurons in the midbrain. Recent studies have described the activation of a stress-induced signal cascade, c-Jun N-terminal kinase (JNK)-mediated activation of c-Jun, and an increase in the expression of a downstream effector, cyclooxygenase 2 (COX-2), in postmortem PD brains. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which induces selective neuronal loss in the midbrain similar to that seen in PD, also induces JNK-mediated activation of c-Jun and generates a COX-2 response in C57BL/6J mice. However, mice exhibit a strain-dependent susceptibility to MPTP. Identifying the point(s) of molecular divergence in the MPTP-induced response may provide insight into the cause of PD or a means to identify susceptibility to PD in humans. Here we examined JNK signaling and COX-2 induction in two strains of mice, the MPTP-sensitive C57BL/6J and the MPTP-resistant Swiss Webster (SW). We show that C57BL/6J and SW strains differ in JNK and c-Jun activation in response to MPTP. In addition, the MPTP-induced COX-2 response occurs exclusively in C57BL/6J mice. Furthermore, strain-specific responses to MPTP are not due to differences in MPP(+) levels and are not secondary to cell death. These results provide evidence toward a mechanism of strain-dependent sensitivity to MPTP.


PLOS ONE | 2012

Allopregnanolone Reinstates Tyrosine Hydroxylase Immunoreactive Neurons and Motor Performance in an MPTP-Lesioned Mouse Model of Parkinson's Disease

Samuel O. Adeosun; Xu Hou; Yun Jiao; Baoying Zheng; Sherry Henry; Rosanne Hill; Zhi He; Amar K. Pani; Patrick B. Kyle; Xiao-Ming Ou; Thomas H. Mosley; Jerry M. Farley; Craig A. Stockmeier; Ian A. Paul; Steven Bigler; Roberta Diaz Brinton; Richard J. Smeyne; Jun Ming Wang

Restorative/protective therapies to restore dopamine neurons in the substantia nigra pars compacta (SNpc) are greatly needed to effectively change the debilitating course of Parkinsons disease. In this study, we tested the therapeutic potential of a neurogenic neurosteroid, allopregnanolone, in the restoration of the components of the nigrostriatal pathway in MPTP-lesioned mice by measuring striatal dopamine levels, total and tyrosine hydroxylase immunoreactive neuron numbers and BrdU-positive cells in the SNpc. An acute treatment (once/week for two weeks) with allopregnanolone restored the number of tyrosine hydroxylase-positive and total cell numbers in the SNpc of MPTP-lesioned mice, even though this did not increase striatal dopamine. It was also noted that MPTP treated mice to which allopregnanolone was administered had an increase in BrdU-positive cells in the SNpc. The effects of allopregnanolone in MPTP-lesioned mice were more apparent in mice that underwent behavioral tests. Interestingly, mice treated with allopregnanolone after MPTP lesion were able to perform at levels similar to that of non-lesioned control mice in a rotarod test. These data demonstrate that allopregnanolone promotes the restoration of tyrosine hydroxylase immunoreactive neurons and total cells in the nigrostriatal tract, improves the motor performance in MPTP-treated mice, and may serve as a therapeutic strategy for Parkinsons disease.


Pharmacology, Biochemistry and Behavior | 2006

The potentiating effects of 1-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine (MPTP) on paraquat-induced neurochemical and behavioral changes in mice

K. Raviie Shepherd; Eunsook Lee; Larry Schmued; Yun Jiao; Syed F. Ali; Ebenezer T. Oriaku; Nazarius S. Lamango; Karam F.A. Soliman; Clivel G. Charlton

Although the etiology of Parkinsons disease (PD) is not fully understood, there are numerous studies that have linked the increased risk for developing PD to pesticides exposure including paraquat (PQ). Moreover, the exposure to a combination of compounds or chemical mixtures has been suggested to further increase this risk. In the current study, the effects of PQ on the nigrostriatal dopaminergic system in male C57BL6 mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were examined to assess the impact of toxic substance mixtures exposure on neurochemical and behavioral changes. In this study, a low non-toxic dose of MPTP (10mg/kg) was injected once a day for 5 days and was followed by PQ (7 mg/kg) once a day for 6 days (subacute protocol) or once a week for 10 weeks (chronic protocol). The results from the subacute protocol showed that PQ reduced the turnover of dopamine (DA) as indicated by a 21% and a 22.3% decrease in dihydroxyphenyl acetic acid (DOPAC), homovanillic acid and increased S-adenosyl methionine/S-adenosyl homocysteine index (SAM/SAH) by 100%. However, the administration of PQ to MPTP primed mice resulted in the decrease of DOPAC, HVA, DA, by 35.8%, 35.2% and 22.1%, respectively. In addition, PQ decreased the total number of movements (TM) by 28% but MPTP plus PQ decreased TM by 41%. The SAM/SAH index showed that MPTP increased methylation by 33.3%, but MPTP plus PQ increased methylation by 81%. In the chronic protocol, the data showed that MPTP administration did not affect DA, DOPAC, and HVA levels. The administration of PQ led to significant decrease in DOPAC, HVA, and TD by 31.6%, 19.9%, and 21.2% respectively with no effect on DA levels. The MPTP plus PQ group showed reduced DA, DOPAC, HVA, and total distance traveled by 58.4%, 82.8%, 55.8%, and 83.9%, respectively. Meanwhile, PQ administration caused a reduction in tyrosine hydroxylase immunoreactivity in the substantia nigra, and this effect was more pronounced in MPTP pretreated mice. It was concluded from this study that prior treatment with MPTP potentiated the effects of PQ in reducing DA, DOPAC, HVA, TH immunoreactivity, locomotor activity, and increasing the methylation index. The enhanced effects of PQ following MPTP administration further support the role of toxic substance mixtures in causing Parkinsons disease.


PLOS ONE | 2012

Exercise Does Not Protect against MPTP-Induced Neurotoxicity in BDNF Happloinsufficent Mice

Kim M. Gerecke; Yun Jiao; Viswajeeth Pagala; Richard J. Smeyne

Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN) dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF), have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/−) with strain-matched wild-type (WT) mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/− mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/− mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.

Collaboration


Dive into the Yun Jiao's collaboration.

Top Co-Authors

Avatar

Richard J. Smeyne

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Amar K. Pani

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Kennie R. Shepherd

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Haeman Jang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Michelle Smeyne

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Baoying Zheng

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brooks B. Pond

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Craig A. Stockmeier

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ian A. Paul

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jerry M. Farley

University of Mississippi Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge