Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kennie R. Shepherd is active.

Publication


Featured researches published by Kennie R. Shepherd.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone

Sung-Wuk Jang; Xia Liu; Manuel Yepes; Kennie R. Shepherd; Gary W. Miller; Yang Liu; W. David Wilson; Ge Xiao; Bruno Blanchi; Yi E. Sun; Keqiang Ye

Brain-derived neurotrophic factor (BDNF), a cognate ligand for the tyrosine kinase receptor B (TrkB) receptor, mediates neuronal survival, differentiation, synaptic plasticity, and neurogenesis. However, BDNF has a poor pharmacokinetic profile that limits its therapeutic potential. Here we report the identification of 7,8-dihydroxyflavone as a bioactive high-affinity TrkB agonist that provokes receptor dimerization and autophosphorylation and activation of downstream signaling. 7,8-Dihydroxyflavone protected wild-type, but not TrkB-deficient, neurons from apoptosis. Administration of 7,8-dihydroxyflavone to mice activated TrkB in the brain, inhibited kainic acid-induced toxicity, decreased infarct volumes in stroke in a TrkB-dependent manner, and was neuroprotective in an animal model of Parkinson disease. Thus, 7,8-dihydroxyflavone imitates BDNF and acts as a robust TrkB agonist, providing a powerful therapeutic tool for the treatment of various neurological diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration

Haeman Jang; David A. Boltz; K. M. Sturm-Ramirez; Kennie R. Shepherd; Yun Jiao; Robert G. Webster; Richard J. Smeyne

One of the greatest influenza pandemic threats at this time is posed by the highly pathogenic H5N1 avian influenza viruses. To date, 61% of the 433 known human cases of H5N1 infection have proved fatal. Animals infected by H5N1 viruses have demonstrated acute neurological signs ranging from mild encephalitis to motor disturbances to coma. However, no studies have examined the longer-term neurologic consequences of H5N1 infection among surviving hosts. Using the C57BL/6J mouse, a mouse strain that can be infected by the A/Vietnam/1203/04 H5N1 virus without adaptation, we show that this virus travels from the peripheral nervous system into the CNS to higher levels of the neuroaxis. In regions infected by H5N1 virus, we observe activation of microglia and alpha-synuclein phosphorylation and aggregation that persists long after resolution of the infection. We also observe a significant loss of dopaminergic neurons in the substantia nigra pars compacta 60 days after infection. Our results suggest that a pandemic H5N1 pathogen, or other neurotropic influenza virus, could initiate CNS disorders of protein aggregation including Parkinsons and Alzheimers diseases.


The Journal of Neuroscience | 2009

Nonmotor symptoms of Parkinson's disease revealed in an animal model with reduced monoamine storage capacity.

Tonya N. Taylor; W. Michael Caudle; Kennie R. Shepherd; AliReza Noorian; Chad R. Jackson; P. Michael Iuvone; David Weinshenker; James G. Greene; Gary W. Miller

Parkinsons disease (PD) is a progressive neurodegenerative disorder that is characterized by the loss of dopamine neurons in the substantia nigra pars compacta, culminating in severe motor symptoms, including resting tremor, rigidity, bradykinesia, and postural instability. In addition to motor deficits, there are a variety of nonmotor symptoms associated with PD. These symptoms generally precede the onset of motor symptoms, sometimes by years, and include anosmia, problems with gastrointestinal motility, sleep disturbances, sympathetic denervation, anxiety, and depression. Previously, we have shown that mice with a 95% genetic reduction in vesicular monoamine transporter expression (VMAT2-deficient, VMAT2 LO) display progressive loss of striatal dopamine, l-DOPA-responsive motor deficits, α-synuclein accumulation, and nigral dopaminergic cell loss. We hypothesized that since these animals exhibit deficits in other monoamine systems (norepinephrine and serotonin), which are known to regulate some of these behaviors, the VMAT2-deficient mice may display some of the nonmotor symptoms associated with PD. Here we report that the VMAT2-deficient mice demonstrate progressive deficits in olfactory discrimination, delayed gastric emptying, altered sleep latency, anxiety-like behavior, and age-dependent depressive behavior. These results suggest that the VMAT2-deficient mice may be a useful model of the nonmotor symptoms of PD. Furthermore, monoamine dysfunction may contribute to many of the nonmotor symptoms of PD, and interventions aimed at restoring monoamine function may be beneficial in treating the disease.


Journal of Clinical Investigation | 2011

Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients

Hua She; Qian Yang; Kennie R. Shepherd; Yoland Smith; Gary W. Miller; Claudia M. Testa; Zixu Mao

The transcription factors in the myocyte enhancer factor 2 (MEF2) family play important roles in cell survival by regulating nuclear gene expression. Here, we report that MEF2D is present in rodent neuronal mitochondria, where it can regulate the expression of a gene encoded within mitochondrial DNA (mtDNA). Immunocytochemical, immunoelectron microscopic, and biochemical analyses of rodent neuronal cells showed that a portion of MEF2D was targeted to mitochondria via an N-terminal motif and the chaperone protein mitochondrial heat shock protein 70 (mtHsp70). MEF2D bound to a MEF2 consensus site in the region of the mtDNA that contained the gene NADH dehydrogenase 6 (ND6), which encodes an essential component of the complex I enzyme of the oxidative phosphorylation system; MEF2D binding induced ND6 transcription. Blocking MEF2D function specifically in mitochondria decreased complex I activity, increased cellular H(2)O(2) level, reduced ATP production, and sensitized neurons to stress-induced death. Toxins known to affect complex I preferentially disrupted MEF2D function in a mouse model of Parkinson disease (PD). In addition, mitochondrial MEF2D and ND6 levels were decreased in postmortem brain samples of patients with PD compared with age-matched controls. Thus, direct regulation of complex I by mitochondrial MEF2D underlies its neuroprotective effects, and dysregulation of this pathway may contribute to PD.


Journal of Neurochemistry | 2008

Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis.

Thomas S. Guillot; Kennie R. Shepherd; Jason R. Richardson; Min Z. Wang; Yingjie Li; Piers C. Emson; Gary W. Miller

The vesicular monoamine transporter 2 (VMAT2) controls the loading of dopamine (DA) into vesicles and therefore determines synaptic properties such as quantal size, receptor sensitivity, and vesicular and cytosolic DA concentration. Impairment of proper DA compartmentalization is postulated to underlie the sensitivity of DA neurons to oxidative damage and degeneration. It is known that DA can auto‐oxidize in the cytosol to form quinones and other oxidative species and that this production of oxidative stress is thought to be a critical factor in DA terminal loss after methamphetamine (METH) exposure. Using a mutant strain of mice (VMAT2 LO), which have only 5–10% of the VMAT2 expressed by wild‐type animals, we show that VMAT2 is a major determinant of METH toxicity in the striatum. Subsequent to METH exposure, the VMAT2 LO mice show an exacerbated loss of dopamine transporter and tyrosine hydroxylase (TH), as well as enhanced astrogliosis and protein carbonyl formation. More importantly, VMAT2 LO mice show massive argyrophilic deposits in the striatum after METH, indicating that VMAT2 is a regulator of METH‐induced neurodegeneration. The increased METH neurotoxicity in VMAT2 LO occurs in the absence of any significant difference in basal temperature or METH‐induced hyperthermia. Furthermore, primary midbrain cultures from VMAT2 LO mice show more oxidative stress generation and a greater loss of TH positive processes than wild‐type cultures after METH exposure. Elevated markers of neurotoxicity in VMAT2 LO mice and cultures suggest that the capacity to store DA determines the amount of oxidative stress and neurodegeneration after METH administration.


Proceedings of the National Academy of Sciences of the United States of America | 2007

GSTπ expression mediates dopaminergic neuron sensitivity in experimental parkinsonism

Michelle Smeyne; Justin D. Boyd; Kennie R. Shepherd; Yun Jiao; Brooks B. Pond; Matthew Hatler; Roland Wolf; Colin J. Henderson; Richard J. Smeyne

The cause of 95% of Parkinsons disease (PD) cases is unknown. It is hypothesized that PD arises from an interaction of free-radical-generating agents with an underlying genetic susceptibility to these compounds. Here we use the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of parkinsonism to examine the role of a dual function protein, GSTπ, in dopaminergic neuron death. GSTπ is the only GST family member expressed in substantia nigra neurons. GSTπ reduction by pharmacological blockade, RNA inhibition, and gene targeting increases sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, suggesting that differential expression of GSTπ contributes to the sensitivity to xenobiotics in the substantia nigra and may influence the pathogenesis of reactive oxygen species-induced neurological disorders including PD.


Glia | 2005

Glia cell number modulates sensitivity to MPTP in mice

Michelle Smeyne; Yun Jiao; Kennie R. Shepherd; Richard J. Smeyne

Free radical damage has been shown to play a significant role in the pathogenesis of a number of neurodegenerative diseases including Parkinsons disease. One model of experimental parkinsonism is the loss of substantia nigra cells following administration of MPTP. Previously, it has been shown that a number of inbred strains of mice have differential responses to this toxin, and this difference is dependent on glial cells. In this study, the number of glial cells in the substantia nigra pars compacta of C57Bl/6J (MPTP‐sensitive) and Swiss Webster (MPTP‐resistant) strains of mice was examined. The C57Bl/6J mice have an approximately 50% lower number of GFAP+ and S‐100β glial cells than the Swiss Webster mice. C57Bl/6J mice have a 25% increased number of resident nonactivated microglial cells. To determine whether this difference in cell number has functional significance, we used an in vitro SN culture system that allowed us to manipulate the number of glial cells. When C57Bl/6 neurons were grown on a glial mat plated with twice the number of cells, we were able to rescue the MPTP‐sensitive neurons from toxin‐induced cell death. This suggests that the number of glial cells in the SNpc may be an important factor in the survival of dopaminergic neurons following exposure to xenobiotics.


Brain Research | 2007

Response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) differs in mouse strains and reveals a divergence in JNK signaling and COX-2 induction prior to loss of neurons in the substantia nigra pars compacta

Justin D. Boyd; Haeman Jang; Kennie R. Shepherd; Ciaran J. Faherty; Sally Slack; Yun Jiao; Richard J. Smeyne

Parkinsons disease (PD) is a neurodegenerative disease whose hallmark pathological features include a selective loss of dopaminergic neurons in the midbrain. Recent studies have described the activation of a stress-induced signal cascade, c-Jun N-terminal kinase (JNK)-mediated activation of c-Jun, and an increase in the expression of a downstream effector, cyclooxygenase 2 (COX-2), in postmortem PD brains. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which induces selective neuronal loss in the midbrain similar to that seen in PD, also induces JNK-mediated activation of c-Jun and generates a COX-2 response in C57BL/6J mice. However, mice exhibit a strain-dependent susceptibility to MPTP. Identifying the point(s) of molecular divergence in the MPTP-induced response may provide insight into the cause of PD or a means to identify susceptibility to PD in humans. Here we examined JNK signaling and COX-2 induction in two strains of mice, the MPTP-sensitive C57BL/6J and the MPTP-resistant Swiss Webster (SW). We show that C57BL/6J and SW strains differ in JNK and c-Jun activation in response to MPTP. In addition, the MPTP-induced COX-2 response occurs exclusively in C57BL/6J mice. Furthermore, strain-specific responses to MPTP are not due to differences in MPP(+) levels and are not secondary to cell death. These results provide evidence toward a mechanism of strain-dependent sensitivity to MPTP.


Neurobiology of Aging | 2015

Age-related changes in regulator of G-protein signaling (RGS)-10 expression in peripheral and central immune cells may influence the risk for age-related degeneration

George T. Kannarkat; Jae-Kyung Lee; Chenere P. Ramsey; Jaegwon Chung; Jianjun Chang; Isadora Porter; Danielle Oliver; Kennie R. Shepherd; Malú G. Tansey

Inflammation in the aging brain increases risk for neurodegenerative disease. In humans, the regulator of G-protein signaling-10 (RGS10) locus has been associated with age-related maculopathy. Chronic peripheral administration of lipopolysaccharide in the RGS10-null mice induces nigral dopaminergic (DA) degeneration, suggesting that RGS10 modulates neuroimmune interactions and may influence susceptibility to neurodegeneration. Because age is the strongest risk factor for neurodegenerative disease, we assessed whether RGS10 expression changes with age and whether aged RGS10-null mice have altered immune cell profiles. Loss of RGS10 in aged mice does not alter the regulation of nigral DA neurons but does alter B-cell, monocyte, microglial, and CD4+ T-cell populations and inflammatory cytokine levels in the cerebrospinal fluid. These results suggest that loss of RGS10 is associated with an age-dependent dysregulation of peripheral and central immune cells rather than dysregulation of DA neuron function.


Neuroscience | 2012

Long-lasting transcriptional refractoriness triggered by a single exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine

Roberto Pattarini; Yongqi Rong; Kennie R. Shepherd; Yun Jiao; Chunxu Qu; Richard J. Smeyne; James I. Morgan

Parkinsons disease (PD) is a progressive neurodegenerative disorder whose etiology is thought to have environmental (toxin) and genetic contributions. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP) induces pathological features of PD including loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and striatal dopamine (DA) depletion. We previously described the striatal transcriptional response following acute MPTP administration in MPTP-sensitive C57BL/6J mice. We identified three distinct phases: early (5h), intermediate (24h) and late (72h) and reported that the intermediate and late responses were absent in MPTP-resistant Swiss-Webster (SWR) mice. Here we show that C57BL/6J mice pre-treated with a single 40 mg/kg dose of MPTP and treated 9 days later with 4×20 mg/kg MPTP, display a striatal transcriptional response similar to that of MPTP-resistant SWR mice, i.e. a robust acute response but no intermediate or late response. Transcriptional refractoriness is dependent upon the dose of the priming challenge with as little as 10mg/kg MPTP being effective and can persist for more than 28 days. Priming of SWR mice has no effect on their response to subsequent challenge with MPTP. We also report that paraquat, another free radical producer, also elicits striatal transcriptional alterations but these are largely distinct from those triggered by MPTP. Paraquat-induced changes are also refractory to priming with paraquat. However neither paraquat nor MPTP elicits cross-attenuation. Thus exposure to specific toxins triggers distinct transcriptional responses in striatum that are influenced by prior exposure to the same toxin. The prolonged refractory period described here for MPTP could explain at the molecular level the reported discrepancies between different MPTP administration regimens and may have implications for our understanding of the relationship between environmental toxin exposure and PD.

Collaboration


Dive into the Kennie R. Shepherd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Smeyne

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Yun Jiao

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Ciaran J. Faherty

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Anna Herasimtschuk

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haeman Jang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge