Yun Ju Lai
University of Alabama at Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yun Ju Lai.
Journal of Biological Chemistry | 2009
E Shuyu; Yun Ju Lai; Ryoko Tsukahara; Chen Shan Chen; Yuko Fujiwara; Junming Yue; Jei Hwa Yu; Huazhang Guo; Akio Kihara; Gabor Tigyi; Fang Tsyr Lin
The G protein-coupled lysophosphatidic acid 2 (LPA2) receptor elicits prosurvival responses to prevent and rescue cells from apoptosis. However, G protein-coupled signals are not sufficient for the full protective effect of LPA2. LPA2 differs from other LPA receptor subtypes in the C-terminal tail, where it contains a zinc finger-binding motif for the interactions with LIM domain-containing TRIP6 and proapoptotic Siva-1, and a PDZ-binding motif through which it complexes with the NHERF2 scaffold protein. In this report, we identify a unique CXXC motif of LPA2 responsible for the binding to TRIP6 and Siva-1, and demonstrate that disruption of these macromolecular complexes or knockdown of TRIP6 or NHERF2 expression attenuates LPA2-mediated protection from chemotherapeutic agent-induced apoptosis. In contrast, knockdown of Siva-1 expression enhances this effect. Furthermore, a PDZ-mediated direct interaction between TRIP6 and NHERF2 facilitates their interaction with LPA2. Together, these results suggest that in addition to G protein-activated signals, the cooperation embedded in the LPA2-TRIP6-NHERF2 ternary complex provides a novel ligand-dependent signal amplification mechanism that is required for LPA2-mediated full activation of antiapoptotic signaling.
Molecular and Cellular Biology | 2005
Yun Ju Lai; Chen Shan Chen; Weei-Chin Lin; Fang Tsyr Lin
ABSTRACT TRIP6 (thyroid receptor-interacting protein 6), also known as ZRP-1 (zyxin-related protein 1), is a member of the zyxin family that has been implicated in cell motility. Previously we have shown that TRIP6 binds to the LPA2 receptor and associates with several components of focal complexes in an agonist-dependent manner and, thus, enhances lysophosphatidic acid (LPA)-induced cell migration. Here we further report that the function of TRIP6 in LPA signaling is regulated by c-Src-mediated phosphorylation of TRIP6 at the Tyr-55 residue. LPA stimulation induces tyrosine phosphorylation of endogenous TRIP6 in NIH 3T3 cells and c-Src-expressing fibroblasts, which is virtually eliminated in Src-null fibroblasts. Strikingly, both phosphotyrosine-55 and proline-58 residues of TRIP6 are required for Crk binding in vitro and in cells. Mutation of Tyr-55 to Phe does not alter the ability of TRIP6 to localize at focal adhesions or associate with actin. However, it abolishes the association of TRIP6 with Crk and p130cas in cells and significantly reduces the function of TRIP6 to promote LPA-induced ERK activation. Ultimately, these signaling events control TRIP6 function in promoting LPA-induced morphological changes and cell migration.
Journal of Biological Chemistry | 2007
Fang Tsyr Lin; Yun Ju Lai; Natalia Makarova; Gabor Tigyi; Weei-Chin Lin
Lysophosphatidic acid (LPA) promotes cell survival through the activation of G protein-coupled LPA receptors. However, whether different LPA receptors activate distinct anti-apoptotic signaling pathways is not yet clear. Here we report a novel mechanism by which the LPA2 receptor targets the proapoptotic Siva-1 protein for LPA-dependent degradation, thereby attenuating Siva-1 function in DNA damage response. The carboxyl-terminal tail of the LPA2 receptor, but not LPA1 or LPA3 receptor, specifically associates with the carboxyl cysteine-rich domain of Siva-1. Prolonged LPA stimulation promotes the association of Siva-1 with the LPA2 receptor and targets both proteins for ubiquitination and degradation. As a result, adriamycin-induced Siva-1 protein stabilization is attenuated by LPA in an LPA2-dependent manner, and the function of Siva-1 in promoting DNA damage-induced apoptosis is inhibited by LPA pretreatment. Consistent with this result, inhibition of the LPA2 receptor expression increases Siva-1 protein levels and augments adriamycin-induced caspase-3 cleavage and apoptosis. Together, these findings reveal a critical and specific role for the LPA2 receptor through which LPA directly inactivates a critical component of the death machinery to promote cell survival.
Molecular and Cellular Biology | 2010
Yun Ju Lai; Victor T.G. Lin; Ying Zheng; Etty N. Benveniste; Fang Tsyr Lin
ABSTRACT The Fas/CD95 receptor mediates apoptosis but is also capable of triggering nonapoptotic signals. However, the mechanisms that selectively regulate these opposing effects are not yet fully understood. Here we demonstrate that the activation of Fas or stimulation with lysophosphatidic acid (LPA) induces cytoskeletal reorganization, leading to the association of Fas with actin stress fibers and the adaptor protein TRIP6. TRIP6 binds to the cytoplasmic juxtamembrane domain of Fas and interferes with the recruitment of FADD to Fas. Furthermore, through physical interactions with NF-κB p65, TRIP6 regulates nuclear translocation and the activation of NF-κB upon Fas activation or LPA stimulation. As a result, TRIP6 antagonizes Fas-induced apoptosis and further enhances the antiapoptotic effect of LPA in cells that express high levels of TRIP6. On the other hand, TRIP6 promotes Fas-mediated cell migration in apoptosis-resistant glioma cells. This effect is regulated via the Src-dependent phosphorylation of TRIP6 at Tyr-55. As TRIP6 is overexpressed in glioblastomas, this may have a significant impact on enhanced NF-κB activity, resistance to apoptosis, and Fas-mediated cell invasion in glioblastomas.
Biochimica et Biophysica Acta | 2008
Fang Tsyr Lin; Yun Ju Lai
While it is well known that lysophosphatidic acid (LPA) mediates diverse physiological and pathophysiological responses through the activation of G protein-coupled LPA receptors, the specificity and molecular mechanisms by which different LPA receptors mediate these biological responses remain largely unknown. Recent identification of several PDZ proteins and zinc finger proteins that interact with the carboxyl-terminal tail of the LPA2 receptor provides a considerable progress towards the understanding of the mechanisms how the LPA2 receptor specifically mediates LPA signaling pathways. These findings have led to the proposal that there are at least two distinct protein interaction motifs present in the carboxyl-terminus of the LPA2 receptor. Together, these data provide a new concept that the efficiency and specificity of the LPA2 receptor-mediated signal transduction can be achieved through the cross-regulation between the classical G protein-activated signaling cascades and the interacting partner-mediated signaling pathways.
Journal of Biological Chemistry | 2007
Yun Ju Lai; Weei-Chin Lin; Fang Tsyr Lin
The LIM domain-containing TRIP6 (Thyroid Hormone Receptor-interacting Protein 6) is a focal adhesion molecule known to regulate lysophosphatidic acid (LPA)-induced cell migration through interaction with the LPA2 receptor. LPA stimulation targets TRIP6 to the focal adhesion complexes and promotes c-Src-dependent phosphorylation of TRIP6 at Tyr-55, which creates a docking site for the Crk Src homology 2 domain, thereby promoting LPA-induced morphological changes and cell migration. Here we further demonstrate that a switch from c-Src-mediated phosphorylation to PTPL1/Fas-associated phosphatase-1-dependent dephosphorylation serves as an inhibitory feedback control mechanism of TRIP6 function in LPA-induced cell migration. PTPL1 dephosphorylates phosphotyrosine 55 of TRIP6 in vitro and inhibits LPA-induced tyrosine phosphorylation of TRIP6 in cells. This negative regulation requires a direct protein-protein interaction between these two molecules and the phosphatase activity of PTPL1. In contrast to c-Src, PTPL1 prevents TRIP6 turnover at the sites of adhesions. As a result, LPA-induced association of TRIP6 with Crk and the function of TRIP6 to promote LPA-induced morphological changes and cell migration are inhibited by PTPL1. Together, these results reveal a novel mechanism by which PTPL1 phosphatase plays a counteracting role in regulating TRIP6 function in LPA-induced cell migration.
Molecular and Cellular Biology | 2013
Victor T.G. Lin; Vivian Y. Lin; Yun Ju Lai; Chen Shan Chen; Kang Liu; Weei-Chin Lin; Fang Tsyr Lin
ABSTRACT TRIP6 is an adaptor protein that regulates cell motility and antiapoptotic signaling. Although it has been implicated in tumorigenesis, the underlying mechanism remains largely unknown. Here we provide evidence that TRIP6 promotes tumorigenesis by serving as a bridge to promote the recruitment of p27KIP1 to AKT in the cytosol. TRIP6 regulates the membrane translocation and activation of AKT and facilitates AKT-mediated recognition and phosphorylation of p27KIP1 specifically at T157, thereby promoting the cytosolic mislocalization of p27KIP1. This is required for p27KIP1 to enhance lysophosphatidic acid (LPA)-induced ovarian cancer cell migration. TRIP6 also promotes serum-induced reduction of nuclear p27KIP1 expression levels through Skp2-dependent and -independent mechanisms. Consequently, knockdown of TRIP6 in glioblastoma or ovarian cancer xenografts restores nuclear p27KIP1 expression and impairs tumor proliferation. As TRIP6 is upregulated in gliomas and its levels correlate with poor clinical outcomes in a dose-dependent manner, it may represent a novel prognostic marker and therapeutic target in gliomas.
Developmental Dynamics | 2014
Yun Ju Lai; Ming Yang Li; Cheng Yao Yang; Kao Hua Huang; Jui Cheng Tsai; Tsu Wei Wang
Background: Postnatal neurogenesis persists throughout life in the subventricular zone (SVZ)‐olfactory bulb pathway in mammals. Extrinsic or intrinsic factors have been revealed to regulate neural stem cell (NSC) properties and neurogenesis. Thyroid hormone receptor interacting protein 6 (TRIP6) belongs to zyxin family of LIM proteins, which have been shown to interact with various proteins to mediate cellular functions. However, the role of TRIP6 in NSCs is still unknown. Results: By performing double immunofluorescence staining, we found that TRIP6 was expressed by Sox2‐positive NSCs in embryonic and postnatal mouse forebrains. To study the function of TRIP6 in NSCs, we performed overexpression and knockdown experiments with neurospheres derived from postnatal day 7 SVZ. We found that TRIP6 was necessary and sufficient for self‐renewal and proliferation of NSCs, but inhibited their differentiation. To further investigate the mechanism of TRIP6 in NSCs, we performed Luciferase reporter assay and found that TRIP6 activated Notch signaling, a pathway required for NSC self‐renewal. Conclusions: Our data suggest that TRIP6 regulates NSC maintenance and it may be a new marker for NSCs. Developmental Dynamics 243:1130–1142, 2014.
Oncotarget | 2017
Yun Ju Lai; Jui Cheng Tsai; Ying Ting Tseng; Meng Shih Wu; Wen Shan Liu; Hoi Ian Lam; Jei Hwa Yu; Susan Nozell; Etty N. Benveniste
Glioblastoma is the most common and aggressive malignant brain tumor in adults. The existence of glioblastoma stem cells (GSCs) or stem–like cells (stemloids) may account for its invasiveness and high recurrence. Rac proteins belong to the Rho small GTPase subfamily which regulates cell movement, proliferation, and survival. To investigate whether Rac proteins can serve as therapeutic targets for glioblastoma, especially for GSCs or stemloids, we examined the potential roles of Rac1, Rac2 and Rac3 on the properties of tumorspheres derived from glioblastoma cell lines. Tumorspheres are thought to be glioblastoma stem-like cells. We showed that Rac proteins promote the STAT3 and ERK activation and enhance cell proliferation and colony formation of glioblastoma stem-like cells. Knockdown of Rac proteins reduces the expression of GSC markers, such as CD133 and Sox2. The in vivo effects of Rac proteins in glioblastoma were further studied in zebrafish and in the mouse xenotransplantation model. Knocking-down Rac proteins abolished the angiogenesis effect induced by the injected tumorspheres in zebrafish model. In the CD133+-U373-tumorsphere xenotransplanted mouse model, suppression of Rac proteins decreased the incidence of tumor formation and inhibited the tumor growth. Moreover, knockdown of Rac proteins reduced the sphere forming efficiency of cells derived from these tumors. In conclusion, not only Rac1 but also Rac2 and 3 are important for glioblastoma tumorigenesis and can serve as the potential therapeutic targets against glioblastoma and its stem-like cells.
PLOS ONE | 2014
Chiung Mei Chen; I-Ling Chen; Yi Cheng Huang; Hsueh-Fen Juan; Ying Lin Chen; Yi-Chun Chen; Chih Hsin Lin; Li Ching Lee; Chi Mei Lee; Guey-Jen Lee-Chen; Yun Ju Lai; Yih Ru Wu
Mutations in the F-box only protein 7 gene (FBXO7), the substrate-specifying subunit of SCF E3 ubiquitin ligase complex, cause Parkinsons disease (PD)-15 (PARK15). To identify new variants, we sequenced FBXO7 cDNA in 80 Taiwanese early onset PD patients (age at onset ≤50) and only two known variants, Y52C (c.155A>G) and M115I (c.345G>A), were found. To assess the association of Y52C and M115I with the risk of PD, we conducted a case–control study in a cohort of PD and ethnically matched controls. There was a nominal difference in the Y52C G allele frequency between PD and controls (p = 0.045). After combining data from China [1], significant difference in the Y52C G allele frequency between PD and controls (p = 0.012) and significant association of G allele with decreased PD risk (p = 0.017) can be demonstrated. Upon expressing EGFP-tagged Cys52 FBXO7 in cells, a significantly reduced rate of FBXO7 protein decay was observed when compared with cells expressing Tyr52 FBXO7. In silico modeling of Cys52 exhibited a more stable feature than Tyr52. In cells expressing Cys52 FBXO7, the level of TNF receptor-associated factor 2 (TRAF2) was significantly reduced. Moreover, Cys52 FBXO7 showed stronger interaction with TRAF2 and promoted TRAF2 ubiquitination, which may be responsible for the reduced TRAF2 expression in Cys52 cells. After induced differentiation, SH-SY5Y cells expressing Cys52 FBXO7 displayed increased neuronal outgrowth. We therefore hypothesize that Cys52 variant of FBXO7 may contribute to reduced PD susceptibility in Chinese.