Weei-Chin Lin
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Weei-Chin Lin.
Molecular and Cellular Biology | 2003
Kang Liu; Fang-Tsyr Lin; J. Michael Ruppert; Weei-Chin Lin
ABSTRACT The E2F transcription factor integrates cellular signals and coordinates cell cycle progression. Our prior studies demonstrated selective induction and stabilization of E2F1 through ATM-dependent phosphorylation in response to DNA damage. Here we report that DNA topoisomerase IIβ binding protein 1 (TopBP1) regulates E2F1 during DNA damage. TopBP1 contains eight BRCT (BRCA1 carboxyl-terminal) motifs and upon DNA damage is recruited to stalled replication forks, where it participates in a DNA damage checkpoint. Here we demonstrated an interaction between TopBP1 and E2F1. The interaction depended on the amino terminus of E2F1 and the sixth BRCT domain of TopBP1. It was specific to E2F1 and was not observed in E2F2, E2F3, or E2F4. This interaction was induced by DNA damage and phosphorylation of E2F1 by ATM. Through this interaction, TopBP1 repressed multiple activities of E2F1, including transcriptional activity, induction of S-phase entry, and apoptosis. Furthermore, TopBP1 relocalized E2F1 from diffuse nuclear distribution to discrete punctate nuclear foci, where E2F1 colocalized with TopBP1 and BRCA1. Thus, the specific interaction between TopBP1 and E2F1 during DNA damage inhibits the known E2F1 activities but recruits E2F1 to a BRCA1-containing repair complex, suggesting a direct role of E2F1 in DNA damage checkpoint/repair at stalled replication forks.
EMBO Reports | 2008
Shan-Zhong Yang; Fang-Tsyr Lin; Weei-Chin Lin
Microcephalin (MCPH1) has a crucial role in the DNA damage response by promoting the expression of Checkpoint kinase 1 (CHK1) and Breast cancer susceptibility gene 1 (BRCA1); however, the mechanism of this regulation remains unclear. Here, we show that MCPH1 regulates CHK1 and BRCA1 through the interaction with E2F1 on the promoters of both genes. MCPH1 also regulates other E2F target genes involved in DNA repair and apoptosis such as RAD51, DDB2, TOPBP1, p73 and caspases. MCPH1 interacts with E2F1 on the p73 promoter, and regulates p73 induction and E2F1‐induced apoptosis as a result of DNA damage. MCPH1 forms oligomers through the second and third BRCT domains. An MCPH1 mutant containing only its oligomerization domain has a dominant‐negative role by blocking MCPH1 binding to E2F1. It also inhibits p73 induction in DNA damage and E2F1‐dependent apoptosis. Taken together, MCPH1 cooperates with E2F1 to regulate genes involved in DNA repair, checkpoint and apoptosis, and might participate in the maintenance of genomic integrity.
The EMBO Journal | 2006
Kang Liu; Jason C. Paik; Bing Wang; Fang-Tsyr Lin; Weei-Chin Lin
Regulation of E2F1‐mediated apoptosis is essential for proper cellular growth. This control requires TopBP1, a BRCT (BRCA1 carboxyl‐terminal) domain‐containing protein, which interacts with E2F1 but not other E2Fs and represses its proapoptotic activity. We now show that the regulation of E2F1 by TopBP1 involves the phosphoinositide 3‐kinase (PI3K)–Akt signaling pathway, and is independent of pocket proteins. Akt phosphorylates TopBP1 in vitro and in vivo. Phosphorylation by Akt induces oligomerization of TopBP1 through its seventh and eighth BRCT domains. The Akt‐dependent oligomerization is crucial for TopBP1 to interact with and repress E2F1. Akt phosphorylation is also required for interaction between TopBP1 and Miz1 or HPV16 E2, and repression of Miz1 transcriptional activity, suggesting a general role for TopBP1 oligomerization in the control of transcription factors. Together, this study defines a novel pathway involving PI3K–Akt–TopBP1 for specific control of E2F1 apoptosis, in parallel with cyclin–Cdk–Rb for general control of E2F activities.
Molecular and Cellular Biology | 2011
Kang Liu; Shiyun Ling; Weei-Chin Lin
ABSTRACT Nearly half of human cancers harbor p53 mutations, which can promote cancerous growth, metastasis, and resistance to therapy. The gain of function of mutant p53 is partly mediated by its ability to form a complex with NF-Y or p63/p73. Here, we demonstrate that TopBP1 mediates these activities in cancer, and we provide both in vitro and in vivo evidence to support its role. We show that TopBP1 interacts with p53 hot spot mutants and NF-YA and promotes mutant p53 and p300 recruitment to NF-Y target gene promoters. TopBP1 also facilitates mutant p53 interaction with and inhibition of the transcriptional activities of p63/p73. Depletion of TopBP1 in mutant p53 cancer cells leads to downregulation of NF-Y target genes cyclin A and Cdk1 and upregulation of p63/p73 target genes such as Bax and Noxa. Mutant p53-mediated resistance to chemotherapeutic agents depends on TopBP1. The growth-promoting activity of mutant p53 in a xenograft model also requires TopBP1. Thus, TopBP1 mediates mutant p53 gain of function in cancer. Since TopBP1 is often overexpressed in cancer cells and is recruited to cooperate with mutant p53 for tumor progression, TopBP1/mutant p53 interaction may be a new therapeutic target in cancer.
Molecular and Cellular Biology | 2004
Yuhong Luo; Fang-Tsyr Lin; Weei-Chin Lin
ABSTRACT Human DNA mismatch repair (MMR) proteins correct DNA errors and regulate cellular response to DNA damage by signaling apoptosis. Mutations of MMR genes result in genomic instability and cancer development. Nonetheless, how MMR proteins are regulated has not yet been determined. While hMLH1, hPMS2, and hMLH3 are known to participate in MMR, the function of another member of MutL-related proteins, hPMS1, remains unclear. Here we show that DNA damage induces the accumulation of hPMS1, hPMS2, and hMLH1 through ataxia-telangiectasia-mutated (ATM)-mediated protein stabilization. The subcellular localization of PMS proteins is also regulated during DNA damage, which induces nuclear localization of hPMS1 and hPMS2 in an hMLH1-dependent manner. The induced levels of hMLH1 and hPMS1 are important for the augmentation of p53 phosphorylation by ATM in response to DNA damage. These observations identify hMutL proteins as regulators of p53 response and demonstrate for the first time a function of hMLH1-hPMS1 complex in controlling the DNA damage response.
Molecular and Cellular Biology | 2005
Yun Ju Lai; Chen Shan Chen; Weei-Chin Lin; Fang Tsyr Lin
ABSTRACT TRIP6 (thyroid receptor-interacting protein 6), also known as ZRP-1 (zyxin-related protein 1), is a member of the zyxin family that has been implicated in cell motility. Previously we have shown that TRIP6 binds to the LPA2 receptor and associates with several components of focal complexes in an agonist-dependent manner and, thus, enhances lysophosphatidic acid (LPA)-induced cell migration. Here we further report that the function of TRIP6 in LPA signaling is regulated by c-Src-mediated phosphorylation of TRIP6 at the Tyr-55 residue. LPA stimulation induces tyrosine phosphorylation of endogenous TRIP6 in NIH 3T3 cells and c-Src-expressing fibroblasts, which is virtually eliminated in Src-null fibroblasts. Strikingly, both phosphotyrosine-55 and proline-58 residues of TRIP6 are required for Crk binding in vitro and in cells. Mutation of Tyr-55 to Phe does not alter the ability of TRIP6 to localize at focal adhesions or associate with actin. However, it abolishes the association of TRIP6 with Crk and p130cas in cells and significantly reduces the function of TRIP6 to promote LPA-induced ERK activation. Ultimately, these signaling events control TRIP6 function in promoting LPA-induced morphological changes and cell migration.
Journal of Biological Chemistry | 2007
Fang Tsyr Lin; Yun Ju Lai; Natalia Makarova; Gabor Tigyi; Weei-Chin Lin
Lysophosphatidic acid (LPA) promotes cell survival through the activation of G protein-coupled LPA receptors. However, whether different LPA receptors activate distinct anti-apoptotic signaling pathways is not yet clear. Here we report a novel mechanism by which the LPA2 receptor targets the proapoptotic Siva-1 protein for LPA-dependent degradation, thereby attenuating Siva-1 function in DNA damage response. The carboxyl-terminal tail of the LPA2 receptor, but not LPA1 or LPA3 receptor, specifically associates with the carboxyl cysteine-rich domain of Siva-1. Prolonged LPA stimulation promotes the association of Siva-1 with the LPA2 receptor and targets both proteins for ubiquitination and degradation. As a result, adriamycin-induced Siva-1 protein stabilization is attenuated by LPA in an LPA2-dependent manner, and the function of Siva-1 in promoting DNA damage-induced apoptosis is inhibited by LPA pretreatment. Consistent with this result, inhibition of the LPA2 receptor expression increases Siva-1 protein levels and augments adriamycin-induced caspase-3 cleavage and apoptosis. Together, these findings reveal a critical and specific role for the LPA2 receptor through which LPA directly inactivates a critical component of the death machinery to promote cell survival.
Molecular and Cellular Biology | 2009
Kang Liu; Naresh Bellam; Hui-Yi Lin; Bing Wang; Cecil R. Stockard; William E. Grizzle; Weei-Chin Lin
ABSTRACT Proper control of the G1/S checkpoint is essential for normal proliferation. The activity of p53 must be kept at a very low level under unstressed conditions to allow growth. Here we provide evidence supporting a crucial role for TopBP1 in actively repressing p53. Depletion of TopBP1 upregulates p53 target genes involved in cell cycle arrest and apoptosis and enhances DNA damage-induced apoptosis. The regulation is mediated by an interaction between the seventh and eighth BRCT domains of TopBP1 and the DNA-binding domain of p53, leading to inhibition of p53 promoter binding activity. Importantly, TopBP1 overexpression is found in 46 of 79 primary breast cancer tissues and is associated with high tumor grade and shorter patient survival time. Overexpression of TopBP1 to a level comparable to that seen in breast tumors leads to inhibition of p53 target gene expression and DNA damage-induced apoptosis and G1 arrest. Thus, a physiological level of TopBP1 is essential for normal G1/S transition, but a pathological level of TopBP1 in cancer may perturb p53 function and contribute to an aggressive tumor behavior.
Molecular and Cellular Biology | 2010
Bing Wang; Kang Liu; Hui-Yi Lin; Naresh Bellam; Shiyun Ling; Weei-Chin Lin
ABSTRACT 14-3-3 proteins regulate many cellular functions, including proliferation. However, the detailed mechanisms by which they control the cell cycle remain to be fully elucidated. We report that one of the 14-3-3 isoforms, 14-3-3τ, is required for the G1/S transition through its role in ubiquitin-independent proteasomal degradation of p21. 14-3-3τ binds to p21, MDM2, and the C8 subunit of the 20S proteasome in G1 phase and facilitates proteasomal targeting of p21. This function of 14-3-3τ may be deregulated in cancer. The overexpression of 14-3-3τ is frequently found in primary human breast cancer and correlates with lower levels of p21 and shorter patient survival. Tenascin-C, an extracellular matrix protein involved in tumor initiation and progression and a known 14-3-3τ inducer, decreases p21 and abrogates adriamycin-induced G1/S arrest. It has been known that p21 is required for a proper tamoxifen response in breast cancer. We show that the overexpression of 14-3-3τ inhibits tamoxifen-induced p21 induction and growth arrest in MCF7 cells. Together, the findings of our studies strongly suggest a novel oncogenic role of 14-3-3τ by downregulating p21 in breast cancer. Therefore, 14-3-3τ may be a potential therapeutic target in breast cancer.
PLOS ONE | 2010
Bing Wang; Shiyun Ling; Weei-Chin Lin
Background Beclin 1 plays an essential role in autophagy; however, the regulation of Beclin 1 expression remains largely unexplored. An earlier ChIP-on-chip study suggested Beclin 1 could be an E2F target. Previously, we also reported that 14-3-3τ regulates E2F1 stability, and is required for the expression of several E2F1 target genes. 14-3-3 proteins mediate many cellular signaling processes, but its role in autophagy has not been investigated. We hypothesize that 14-3-3τ could regulate Beclin 1 expression through E2F1 and thus regulate autophagy. Methods and Findings Using the RNAi technique we demonstrate a novel role for one of 14-3-3 isoforms, 14-3-3τ, in the regulation of Beclin 1 expression and autophagy. Depletion of 14-3-3τ inhibits the expression of Beclin 1 in many different cell lines; whereas, upregulation of 14-3-3τ induces Beclin 1. The regulation is physiologically relevant as an extracellular matrix protein tenascin-C, a known 14-3-3τ inducer, can induce Beclin 1 through 14-3-3τ. Moreover, rapamycin-induced, serum free-induced and amino acid starvation-induced autophagy depends on 14-3-3τ. We also show the expression of Beclin 1 depends on E2F, and E2F can transactivate the Beclin 1 promoter in a promoter reporter assay. Upregulation of Beclin 1 by 14-3-3τ requires E2F1. Depletion of E2F1, like 14-3-3τ, also inhibits autophagy. Conclusion Taken together, this study uncovers a role for 14-3-3τ in Beclin 1 and autophagy regulation probably through regulation of E2F1.