Yuncheng Liao
Northwest A&F University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuncheng Liao.
PLOS ONE | 2013
Yang Liu; Dandan Gu; Wei Wu; Xiaoxia Wen; Yuncheng Liao
The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat.
Euphytica | 2014
Wei Wu; Changjiang Li; Baoluo Ma; Farooq Shah; Yang Liu; Yuncheng Liao
Genetic progress has brought about a dramatic increase in yield potential per se for almost all production areas around the world. The present study examines the relationship of wheat yield with year of release, yield components, harvest index (HI), biomass production, and plant height. We used aggregative data from 1945 to 2010 to calculate genetic gain in wheat yield across different zones in China. A deeper understanding of these issues facilitates the identification of specific yield-limiting factors that can be used for future breeding strategies. Absolute yield gain for the different zones was found to range from 20 to 103xa0kgxa0ha−1 year−1, whereas relative yield gain ranged from 0.33 to 1.42xa0% per year. When data from all the Chinese wheat production zones was pooled, yield gain at the national level had an absolute value of 66xa0kgxa0ha−1 year−1 and a relative value of 1xa0% per year. Grain weight and spike weight, rather than the other yield components, are significantly correlated with year of release for most zones, suggesting that these two were the most promising traits for breeders in the past. These two traits are also responsible for the significant genetic progress in wheat yield in China since 1949. HI and biomass production also showed strong correlation with year of release and grain yield. In China, HI and grain weight have experienced such a substantial increase that both have almost reached their theoretical maxima in the period 1945–2010. Further improvement in the yield potential of wheat will have to involve increase in biomass production and grain number. This paper also reviews cropping systems and technologies as well as improvement in physiological trait from 1945 onwards during the period of genetic gain.
Plant Physiology and Biochemistry | 2016
Yang Liu; Haiyan Liang; Xiaokang Lv; Didi Liu; Xiaoxia Wen; Yuncheng Liao
Drought inhibits wheat grain filling. Polyamines (PAs) are closely associated with plant resistance due to drought and grain filling of cereals. However, little is known about the effect of PAs on the grain filling of wheat under drought stress. This study investigated whether and how PAs are involved in regulating wheat grain filling under drought stress. Two wheat genotypes differing in drought resistance were used, and endogenous PA levels were measured during grain filling under different water treatments. Additionally, external PAs were used, and the variation of hormone levels in grains was measured during grain filling under drought stress. The results indicated that spermidine (Spd) and spermine (Spm) relieve the inhibition caused by drought stress, and putrescine (Put) has the opposite effect. The higher activities of S-adenosylmethionine decarboxylase and Spd synthase in grains promotes the synthetic route from Put to Spd and Spm and notably increases the free Spd and Spm concentrations in grains, which promotes grain filling and drought resistance in wheat. The effect of PA on the grain filling of wheat under drought stress was closely related to the endogenous ethylene (ETH), zeatin (Z) + zeatin riboside (ZR) and abscisic acid (ABA). Spd and Spm significantly increased the Z + ZR and ABA concentrations and decreased the ETH evolution rate in grains, which promoted wheat grain filling under drought. Put significantly increased the ETH evolution rate, which led to excessive ABA accumulation in grains, subsequently aggravating the inhibition of drought on wheat grain filling. This means that the interaction of hormones, rather than the action of a single hormone, was involved in the regulation of wheat grain filling under drought.
Agronomy for Sustainable Development | 2016
Ziting Wang; Lu Liu; Qing Chen; Xiaoxia Wen; Yuncheng Liao
Agricultural practices change soil’s physical and chemical properties, therefore modifying soil microbial communities. Conservation tillage is widely used to improve the soil texture and nutrient status in the dryland regions of northern China. However, little is known about the influence of soil properties on microbes, in particular on the effect of conservation tillage on soil bacterial communities. Here, we studied the effect of a 5-year tillage treatment on soil properties and soil bacterial communities in the dryland regions of northern China using a high-throughput sequencing technology and quantitative PCR of 16S rRNA genes. We compared the changes in soil bacterial diversity, and composition was measured for conservation tillage, including zero plow or chisel plow, and for conventional tillage using plow. Our results show that conservation tillage increased the Simpson index by 378xa0% and exhibited significantly dissimilar polygenetic diversity, with r of 1, and taxonomic diversity, of r higher than 0.49, compared to conventional tillage. This finding demonstrates that conservation tillage modifies soil bacterial diversity. Chisel plow and zero tillage increase the abundance of the genus Bacillus, including 85xa0% of the phylum Firmicutes, and of Rhizobiales belonging to the Alphaproteobacteria. Overall conservation tillage increased the abundance of profitable functional bacteria species.
PLOS ONE | 2013
Sikander Khan Tanveer; Xiaoxia Wen; Xing Li Lu; Junli Zhang; Yuncheng Liao
A two year (2010–2012) study was conducted to assess the effects of different agronomic management practices on the emissions of CO2 from a field of non-irrigated wheat planted on Chinas Loess Plateau. Management practices included four tillage methods i.e. T1: (chisel plow tillage), T2: (zero-tillage), T3: (rotary tillage) and T4: (mold board plow tillage), 2 mulch levels i.e., M0 (no corn residue mulch) and M1 (application of corn residue mulch) and 5 levels of N fertilizer (0, 80, 160, 240, 320 kg N/ha). A factorial experiment having a strip split-split arrangement, with tillage methods in the main plots, mulch levels in the sub plots and N-fertilizer levels in the sub-sub plots with three replicates, was used for this study. The CO2 data were recorded three times per week using a portable GXH-3010E1 gas analyzer. The highest CO2 emissions were recorded following rotary tillage, compared to the lowest emissions from the zero tillage planting method. The lowest emissions were recorded at the 160 kg N/ha, fertilizer level. Higher CO2 emissions were recorded during the cropping year 2010–11 relative to the year 2011–12. During cropping year 2010–11, applications of corn residue mulch significantly increased CO2 emissions in comparison to the non-mulched treatments, and during the year 2011–12, equal emissions were recorded for both types of mulch treatments. Higher CO2 emissions were recorded immediately after the tillage operations. Different environmental factors, i.e., rain, air temperatures, soil temperatures and soil moistures, had significant effects on the CO2 emissions. We conclude that conservation tillage practices, i.e., zero tillage, the use of corn residue mulch and optimum N fertilizer use, can reduce CO2 emissions, give better yields and provide environmentally friendly options.
Journal of Integrative Agriculture | 2013
Yang Liu; Juan Han; Xiaoxia Wen; Wei Wu; Qiang Guo; Ai Zeng; Yuncheng Liao
Although plastic-covered ridge and furrow planting(RF) has been reported to produce substantial increases in the grain weight of winter wheat,the underlying mechanism is not yet understood.The present study used two cultivars,Xinong 538 and Zhoumai 18,and RF and traditional flatten planting(TF,control) with the objective of investigating the effect of RF on wheat grain filling and the possible relationship of hormonal changes in the wheat grains under RF to grain filling.The results indicated that RF significantly increased the grain weight,although the effects on grain filling were different: RF significantly increased the grain-filling rate and grain weight of inferior grains,whereas RF had no significant effect on grainfilling rate and grain weight of superior grains.The final grain weight of inferior grains under RF was 39.1 and 50.7 mg for Xinong 538 and Zhoumai 18,respectively,3.6 and 3.4 mg higher than the values under TF.However,the final grain weight of superior grains under RF was only 0.6 and 0.8 mg higher than under TF for Xinong 538 and Zhoumai 18,respectively.RF significantly decreased the ethylene and gibberellic acid content in the inferior grains and increased the indole-3-acetic acid,abscisic acid and zeatin + zeatin riboside content in the inferior grains;however,no significant difference between RF and TF was observed for the hormonal content in the superior grains.Based on these results,we concluded that RF significantly modulated hormonal changes in the inferior grains and,thus,affected the grain filling and grain weight of the inferior grains;in contrast,RF had no significant effect on grain filling,grain weight and hormonal changes in the superior wheat grains.
Scientific Reports | 2016
Qiaofei Liu; Yu Chen; Weiwei Li; Yang Liu; Juan Han; Xiaoxia Wen; Yuncheng Liao
A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions.
Soil Research | 2016
Xingli Lu; Xingneng Lu; Sikander Khan Tanveer; Xiaoxia Wen; Yuncheng Liao
Tillage disturbance can affect carbon dynamics in soil and plant production through several mechanisms. There are few integrated studies that have dealt with the effect of tillage management on soil CO2 emission and yield of wheat grain (Triticum aestivum L.) in the Loess Plateau in China. A 3-year (2010–12 and 2013–14) field experiment with two types of tillage was established to investigate CO2 emission, its related soil properties, crop yields and yield-scaled CO2 emissions (CO2 emissions per unit crop production) under rain-fed field conditions. Some land was planted with winter wheat without using tillage (‘no tillage’; NT), whereas some used mouldboard plough tillage (‘conventional tillage’; CT). The results indicate that CO2 was significantly and positively related to total nitrogen (Pu2009<u20090.01), soil organic matter (Pu2009<u20090.01), soil enzymes (Pu2009<u20090.01; urease, invertase, and catalase), soil temperature (Pu2009<u20090.01) and total pore space (Pu2009<u20090.05). Multiple linear regression analysis in the NT plot included soil temperature and air filled pore space, explaining 85% (Pu2009<u20090.05) of the CO2 variability, whereas in the CT plot the multiple linear regression model included soil temperature, urease, bulk density and pH, explaining 80% (Pu2009<u20090.001) of the CO2 variability. Compared with the CT treatment, NT reduced the 3-year average yield-scaled CO2 emissions by 41% because of a 40% reduction in total CO2 emissions with no reduction in wheat yield. Thus, the results indicate that NT could be used to reduce the contribution of agriculture to CO2 emissions while simultaneously maintaining wheat crop production in this area.
Frontiers in Microbiology | 2017
Ziting Wang; Tong Li; Xiaoxia Wen; Yang Liu; Juan Han; Yuncheng Liao; Jennifer M. DeBruyn
Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years) conservation (chisel plow, zero) and conventional (plow) tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS) gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1) differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2) tillage can alter fungal communities variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in tillage regimes may result in unique soil fungal ecology, which might influence other aspects of soil functioning (e.g., decomposition).
PLOS ONE | 2015
Yang Liu; Juan Han; Didi Liu; Dandan Gu; Yongping Wang; Yuncheng Liao; Xiaoxia Wen
Plastic film mulching (PM) is widely utilized for maize production in China. However, the effect of PM on the grain yield of crops has not been established, and the biochemical mechanism underlying the increase or decrease in grain yield under PM is not yet understood. Grain filling markedly affects the grain yield. The objective of this study was to investigate the effects of PM on maize grain filling under different irrigation levels and the relationship of such effects with hormonal changes. In the present study, PM was compared with traditional nonmulching management (TN) under 220 mm, 270 mm and 320 mm irrigation amount, and the grain filling characters of the grains located in various parts of the ear and the hormonal changes in the grains were measured. The results indicated that at 220 mm irrigation, PM significantly increased the grain filling rate of the middle and basal grains and decreased the grain filling rate of the upper grains. At 270 mm irrigation, the PM significantly increased the grain filling rate of the all grains. At 320 mm irrigation, the PM only significantly increased the grain filling rate of the upper grains. The IAA, Z+ZR and ABA content in the grains was positively correlated with the grain weight and grain-filling rates; however, the ETH evolution rate of the grains was negatively correlated with the grain weight and grain-filling rates. These results show that the effect of PM on maize grain filling is related to the irrigation amount and that the grain position on the ear and the grain filling of the upper grains was more sensitive to PM and irrigation than were the other grains. In addition, the PM and irrigation regulated the balance of hormones rather than the content of individual hormones to affect the maize grain filling.