Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuni Lee is active.

Publication


Featured researches published by Yuni Lee.


Science | 2015

MAVEN observations of the response of Mars to an interplanetary coronal mass ejection

Bruce M. Jakosky; Joseph M. Grebowsky; J. G. Luhmann; J. E. P. Connerney; F. G. Eparvier; R. E. Ergun; J. S. Halekas; D. Larson; P. Mahaffy; J. P. McFadden; D. F. Mitchell; Nicholas M. Schneider; Richard W. Zurek; S. W. Bougher; D. A. Brain; Y. J. Ma; C. Mazelle; L. Andersson; D. J. Andrews; D. Baird; D. N. Baker; J. M. Bell; Mehdi Benna; M. S. Chaffin; Phillip C. Chamberlin; Y.-Y. Chaufray; John Clarke; Glyn Collinson; Michael R. Combi; Frank Judson Crary

Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.


Science | 2015

Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability

S. W. Bougher; Bruce M. Jakosky; J. S. Halekas; Joseph M. Grebowsky; J. G. Luhmann; P. Mahaffy; J. E. P. Connerney; F. G. Eparvier; R. E. Ergun; D. Larson; J. P. McFadden; D. L. Mitchell; Nicholas M. Schneider; Richard W. Zurek; C. Mazelle; L. Andersson; D. J. Andrews; D. Baird; D. N. Baker; J. M. Bell; Mehdi Benna; D. A. Brain; M. S. Chaffin; Phillip C. Chamberlin; Y.-Y. Chaufray; John Clarke; Glyn Collinson; Michael R. Combi; Frank Judson Crary; T. E. Cravens

The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.


Science | 1995

Dynamics of carbonium ions solvated by molecular hydrogen : CH5+(H2)n(n=1,2,3)

D. W. Boo; Zhe Liu; Arthur G. Suits; John S. Tse; Yuni Lee

The dynamics of the carbonium ion (CH5+), a highly reactive intermediate with no equilibrium structure, was studied by measuring the infrared spectra for internally cold CH5+(H2)n(n = 1, 2, 3) stored in an ion trap. First-principle molecular dynamics methods were used to directly simulate the internal motion for these ionic complexes. The combined experimental and theoretical efforts substantiated the anticipated scrambling motion in the CH5+ core and revealed the effect of the solvent molecular hydrogen in slowing down the scrambling. The results indicate the feasibility of using solvent molecules to stabilize the floppy CH5+ ion in order to make it amenable to spectroscopic study.


Journal of Geophysical Research | 2015

Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations

Chuanfei Dong; Stephen W. Bougher; Yingjuan Ma; Gabor Zsolt Toth; Yuni Lee; Andrew F. Nagy; Valeriy M. Tenishev; Dave J. Pawlowski; Michael R. Combi; Dalal Najib

A comprehensive study of the solar wind interaction with the Martian upper atmosphere is presented. Three global models: the 3-D Mars multifluid Block Adaptive Tree Solar-wind Roe Upwind Scheme MHD code (MF-MHD), the 3-D Mars Global Ionosphere Thermosphere Model (M-GITM), and the Mars exosphere Monte Carlo model Adaptive Mesh Particle Simulator (M-AMPS) were used in this study. These models are one-way coupled; i.e., the MF-MHD model uses the 3-D neutral inputs from M-GITM and the 3-D hot oxygen corona distribution from M-AMPS. By adopting this one-way coupling approach, the Martian upper atmosphere ion escape rates are investigated in detail with the combined variations of crustal field orientation, solar cycle, and Martian seasonal conditions. The calculated ion escape rates are compared with Mars Express observational data and show reasonable agreement. The variations in solar cycles and seasons can affect the ion loss by a factor of ∼3.3 and ∼1.3, respectively. The crustal magnetic field has a shielding effect to protect Mars from solar wind interaction, and this effect is the strongest for perihelion conditions, with the crustal field facing the Sun. Furthermore, the fraction of cold escaping heavy ionospheric molecular ions [( 2+ and/or 2+)/Total] are inversely proportional to the fraction of the escaping (ionospheric and corona) atomic ion [O+/Total], whereas 2+ and 2+ ion escape fractions show a positive linear correlation since both ion species are ionospheric ions that follow the same escaping path.


Geophysical Research Letters | 2015

A comparison of 3‐D model predictions of Mars' oxygen corona with early MAVEN IUVS observations

Yuni Lee; Michael R. Combi; Valeriy M. Tenishev; Stephen W. Bougher; Justin Deighan; Nicholas M. Schneider; William E. McClintock; Bruce M. Jakosky

We have compared our 3-D hot O corona model predictions with the OI 130.4 nm emission detected by Imaging Ultraviolet Spectrograph/Mars Atmosphere and Volatile EvolutioN (IUVS/MAVEN) based completely on our best pre-MAVEN understanding of the 3-D structure of the thermosphere and ionosphere. The model was simulated appropriately for the observational conditions. In addition to dissociative recombination (DR) of O2+, DR of CO2+ is also considered as an important hot O source. The model predictions showed excellent agreement with the transition altitude, the observed altitude variation of density, and the spatial variation of the corona with respect to the Mars-Sun geometry. While previous models predicted escape rates covering a range of nearly 100, the brightness of the modeled hot O densities is a factor of ~1.5 lower than the observations. We discuss possible changes to the model that could come from further analysis of MAVEN measurements and that might close the gap between the modeled and observed brightness.


Journal of Geophysical Research | 2015

Hot oxygen corona at Mars and the photochemical escape of oxygen: Improved description of the thermosphere, ionosphere, and exosphere

Yuni Lee; Michael R. Combi; Valeriy M. Tenishev; Stephen W. Bougher; Robert J. Lillis

The Mars Adaptive Mesh Particle Simulator model is coupled with the Mars Global Ionosphere Thermosphere Model for the first time to provide an improved description of the Martian hot O corona based on our modeling studies of O2+ dissociative recombination. A total of 12 cases comprising three solar activity levels and four orbital positions is considered to study the solar cycle and seasonal variability. The newly coupled framework includes two additional thermospheric species and adopts a realistic forward scattering scheme using the angular differential cross sections. We present the effects of these changes on the resulting hot O corona and escape rate. A comparison between the simulated hot O corona and the recent observations from the ALICE/Rosetta instrument showed a reasonable agreement, considering the large uncertainties in the data. We assume that some discrepancies near the transition altitude may be originated from the averaging over the altitude range, where the cold and hot O densities become comparable. The revised O escape rates by our new coupled framework range from ~1.21 × 1025 s−1 to ~5.43 × 1025 s−1.


The Astronomical Journal | 2011

SOHO/SWAN OBSERVATIONS OF SHORT-PERIOD SPACECRAFT TARGET COMETS

Michael R. Combi; Yuni Lee; T. S. Patel; J. T. T. Mäkinen; Eric Quémerais

SWAN, the Solar Wind ANisotropies all-sky hydrogen Lyα camera on the Solar and Heliospheric Observatory spacecraft that makes all-sky images of interplanetary neutral hydrogen, has an ongoing campaign to make special observations of comets, both short- and long-period ones, in addition to the serendipitous observations of comets as part of the all-sky monitoring program. We report here on a study of several short-period comets that were detected by SWAN: 21P/Giacobini-Zinner (1998 and 2005 apparitions), 19P/Borrelly (2001 apparition), 81P/Wild 2 (1997 apparition), and 103P/Hartley 2 (1997 apparition). SWAN observes comets over long continuous stretches of their visible apparitions and therefore provides excellent temporal coverage of the water production. For some of the observations we are also able to analyze an entire sequence of images over many days to several weeks/months using our time-resolved model and extract daily average water production rates over continuous periods of several days to months. The short-term (outburst) and long-term behavior can be correlated with other observations. The overall long-term variation is examined in light of seasonal effects seen in the pre- to post-perihelion differences. For 21P/Giacobini-Zinner and 81P/Wild 2 the activity variations over each apparition were more continuously monitored but nonetheless consistent with previous observations. For 19P/Borrelly we found a very steep variation of water production rates, again consistent with some previous observations, and a variation over six months around perihelion that was reasonably consistent with the spin-axis model of Schleicher et al. and the illumination of the main active areas. During the 1997–1998 apparition of 103P/Hartley 2, the target comet of the EPOXI mission (the Deep Impact extended mission), we found a variation with heliocentric distance (∼r −3.6 ) that was almost as steep as 19P/Borrelly and, given the small measured radius near aphelion, this places a number of possible constraints on the size, shape, and/or distribution active of areas on the surface.


Journal of Geophysical Research | 2014

Hot carbon corona in Mars’ upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox

Yuni Lee; Michael R. Combi; Valeriy M. Tenishev; Stephen W. Bougher

Two important source reactions for hot atomic carbon on Mars are photodissociation of CO and dissociative recombination of CO+; both reactions are highly sensitive to solar activity and occur mostly deep in the dayside thermosphere. The production of energetic particles results in the formation of hot coronae that are made up of neutral atoms including hot carbon. Some of these atoms are on ballistic trajectories and return to the thermosphere, and others escape. Understanding the physics in this region requires modeling that captures the complicated dynamics of hot atoms in 3-D. This study evaluates the carbon atom inventory by investigating the production and distribution of energetic carbon atoms using the full 3-D atmospheric input. The methodology and details of the hot atomic carbon model calculation are given, and the calculated total global escape of hot carbon from the assumed dominant photochemical processes at a fixed condition, equinox (Ls = 180°), and low solar activity (F10.7 = 70 at Earth) are presented. To investigate the dynamics of these energetic neutral atoms, we have coupled a self-consistent 3-D global kinetic model, the Adaptive Mesh Particle Simulator, with a 3-D thermosphere/ionosphere model, the Mars Thermosphere General Circulation Model to provide a self-consistent global description of the hot carbon corona in the upper thermosphere and exosphere. The spatial distributions of density and temperature and atmospheric loss are simulated for the case considered.


The Astronomical Journal | 2009

Water Production in Comets 2001 Q4 (NEAT) and 2002 T7 (LINEAR) Determined from SOHO/SWAN Observations

Michael R. Combi; J. T. T. Mäkinen; Yuni Lee; Eric Quémerais

The SWAN all-sky camera on the Solar and Heliospheric Observatory (SOHO) spacecraft detected the hydrogen Lyman-alpha (Lyα) comae of comets 2001 Q4 NEAT and 2002 T7 LINEAR for large portions of their perihelion apparitions in 2003 and 2004. C/2001 Q4 NEAT was observed from 2003 September 14 through 2004 November 2, covering heliocentric distances from 3.23 AU before perihelion to 2.75 AU after, and C/2002 T7 LINEAR was observed from 2003 December 4 through 2004 August 6, covering heliocentric distances from 2.52 AU before perihelion to 2.09 AU after. We combined the full set of comet specific and full-sky observations and used our time-resolved model (TRM), which enables us to extract continuous values of the daily-average value of the water production rate throughout most of this entire period. The average power-law fit to the production rate variation of C/2001 Q4 NEAT with heliocentric distance, r, gives 3.5 × 1029 r –1.7 and that for C/2002 T7 LINEAR gives 4.6 × 1029 r –2.0. Both comets show roughly a factor of 2 asymmetry in activity about perihelion, being more active before perihelion. C/2001 Q4 NEAT showed a production rate outburst about 30 days before perihelion (2004 April 15) and then a large extended increase above the nominal trend from 50 to 70 days after perihelion (2004 July 5-July 25).


Journal of Geophysical Research | 2017

Photochemical escape of oxygen from Mars: First results from MAVEN in situ data

Robert J. Lillis; Justin Deighan; Jane L. Fox; Stephen W. Bougher; Yuni Lee; Michael R. Combi; T. E. Cravens; A. Rahmati; Paul R. Mahaffy; Mehdi Benna; Meredith Elrod; James P. McFadden; R. E. Ergun; L. Andersson; C. M. Fowler; Bruce M. Jakosky; E. M. B. Thiemann; F. G. Eparvier; J. S. Halekas; François Leblanc; Jean Yves Chaufray

Photochemical escape of atomic oxygen is thought to be one of the dominant channels for Martian atmospheric loss today and played a potentially major role in climate evolution. MAVEN is the first mission capable of measuring, in situ, the relevant quantities necessary to calculate photochemical escape fluxes. We utilize 18 months of data from three MAVEN instruments: LPW, NGIMS and STATIC. From these data we calculate altitude profiles of the production rate of hot oxygen atoms from the dissociative recombination (DR) of O2+ and the probability that such atoms will escape the Mars atmosphere. From this we determine escape fluxes for 815 periapsis passes. Derived average dayside hot O escape rates range from 1.2 to 5.5 x 1025 s-1 depending on season and EUV flux, consistent with several pre-MAVEN predictions and in broad agreement with estimates made with other MAVEN measurements. Hot O escape fluxes do not vary significantly with dayside solar zenith angle or crustal magnetic field strength, but depend on CO2 photoionization frequency with a power law whose exponent is 2.6 ± 0.6, an unexpectedly high value which may be partially due to seasonal and geographic sampling. From this dependence and historical EUV measurements over 70 years, we estimate a modern-era average escape rate of 4.3 x 1025 s-1. Extrapolating this dependence to early solar system EUV conditions gives total losses of 13, 49, 189, and 483 mb of oxygen over 1, 2, 3, and 3.5 Gyr respectively, with uncertainties significantly increasing with time in the past.

Collaboration


Dive into the Yuni Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce M. Jakosky

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. G. Luhmann

University of California

View shared research outputs
Top Co-Authors

Avatar

Justin Deighan

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chuanfei Dong

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jane L. Fox

Wright State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge