Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunjun Sun is active.

Publication


Featured researches published by Yunjun Sun.


Current Microbiology | 2008

Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis.

Xuezhi Ding; Zhaohui Luo; Liqiu Xia; Bida Gao; Yunjun Sun; Youming Zhang

In order to improve the insecticidal activity, the chitinase gene from tobacco (Nicotiana tabacum) endochitinase and the cry1Ac gene from Bacillus thuringiensis were cloned into the vector pHT315 and designated as pHUAccB5 plasmid. The constructed transcriptional fusion was attempted under the control of the native cry1Ac promoter. Plasmid pHUAccB5 was introduced into B. thuringiensis acrystalliferous by electroporation. Analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot, the transformant XBU-HUAccB5 produced 130–kDa Cry1Ac protein and 30-kDa chitinase protein. During the chitinase active analysis, the transformant, XBU-HUAccB5 chitinase active, reached 7.5 U/mL at 72 h, and was 5 times higher than the HTX-42 and 6 times higher than the parent strains. When the insecticidal activity of the transformant was evaluated against Helicoverpa armigera Hubner, the XBU-HUAccB5 toxicity was 11.30 times higher than the transformant HTX-42 expressed single cry1Ac at 48 h and was 18.76 times higher at 72 h.


Journal of Molecular Modeling | 2008

The theoretical 3D structure of Bacillus thuringiensis Cry5Ba

Liqiu Xia; Xinmin Zhao; Xuezhi Ding; Faxiang Wang; Yunjun Sun

Cry5Ba is a δ-endotoxin produced by Bacillus thuringiensis PS86A1 NRRL B-18900. It is active against nematodes and has great potential for nematode control. Here, we predict the first theoretical model of the three-dimensional (3D) structure of a Cry5Ba toxin by homology modeling on the structure of the Cry1Aa toxin, which is specific to Lepidopteran insects. Cry5Ba resembles the previously reported Cry1Aa toxin structure in that they share a common 3D structure with three domains, but there are some distinctions, with the main differences being located in the loops of domain I. Cry5Ba exhibits a changeable extending conformation structure, and this special structure may also be involved in pore-forming and specificity determination. A fuller understanding of the 3D structure will be helpful in the design of mutagenesis experiments aimed at improving toxicity, and lead to a deep understanding of the mechanism of action of nematicidal toxins.


Microbial Cell Factories | 2014

Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa

Qi Yang; Xuezhi Ding; Xuemei Liu; Shuang Liu; Yunjun Sun; Ziquan Yu; Shengbiao Hu; Jie Rang; Hao He; Lian He; Liqiu Xia

BackgroundSaccharopolyspora spinosa is an important producer of antibiotic spinosad with clarified biosynthesis pathway but its complex regulation networks associated with primary metabolism and secondary metabolites production almost have never been concerned or studied before. The proteomic analysis of a novel Saccharopolyspora spinosa CCTCC M206084 was performed and aimed to provide a global profile of regulatory proteins.ResultsTwo-dimensional-liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1090, 1166, 701, and 509 proteins from four phases respectively, i.e., the logarithmic growth phase (T1), early stationary phase (T2), late stationary phase (T3), and decline phase (T4). Among the identified proteins, 1579 were unique to the S. spinosa proteome, including almost all the enzymes for spinosad biosynthesis. Trends in protein expression over the various time phases were deduced from using the modified protein abundance index (PAI), revealed the importance of stress pathway proteins and other global regulatory network proteins during spinosad biosynthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis followed by one-dimensional LC-MS/MS identification revealed similar trend of protein expression from four phases with the results of semi-quantification by PAI. qRT-PCR analysis revealed that 6 different expressed genes showed a positive correlation between changes at translational and transcriptional expression level. Expression of three proteins that likely promote spinosad biosynthesis, namely, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase (MHSM), glutamine synthetase (GS) and cyclic nucleotide-binding domain-containing protein (CNDP) was validated by western blot, which confirmed the results of proteomic analysis.ConclusionsThis study is the first systematic analysis of the S. spinosa proteome during fermentation and its valuable proteomic data of regulatory proteins may be used to enhance the production yield of spinosad in future studies.


Applied and Environmental Microbiology | 2013

Identification and Characterization of Three Previously Undescribed Crystal Proteins from Bacillus thuringiensis subsp. jegathesan

Yunjun Sun; Qiang Zhao; Liqiu Xia; Xuezhi Ding; Quanfang Hu; Brian A. Federici

ABSTRACT The total protoxin complement in the parasporal body of mosquitocidal strain, Bacillus thuringiensis subsp. jegathesan 367, was determined by use of a polyacrylamide gel block coupled to mass spectrometry. A total of eight protoxins were identified from this strain, including five reported protoxins (Cry11Ba, Cry19Aa, Cry24Aa, Cry25Aa, and Cyt2Bb), as well as three previously undescribed (Cry30Ca, Cry60Aa, and Cry60Ba) in this isolate. It was interesting that the encoding genes of three new protoxins existed as cry30Ca-gap-orf2 and cry60Ba-gap-cry60Aa. The cry30Ca and a downstream orf2 gene were oriented in the same direction and separated by 114 bp, and cry60Ba was located 156 bp upstream from and in the same orientation to cry60Aa. The three new protoxin genes were cloned from B. thuringiensis subsp. jegathesan and expressed in an acrystalliferous strain under the control of cyt1A gene promoters and the STAB-SD stabilizer sequence. Recombinant strain containing only cry30Ca did not produce visible inclusion under microscope observation, while that containing both cry30Ca and orf2 could produce large inclusions. Cry60Aa and Cry60Ba synthesized either alone or together in the acrystalliferous host could yield large inclusions. In bioassays using the fourth-instar larvae of Culex quinquefasciatus, Cry60Aa and Cry60Ba alone or together had estimated 50% lethal concentrations of 2.9 to 7.9 μg/ml; however, Cry30Ca with or without ORF2 was not toxic to this mosquito.


Applied and Environmental Microbiology | 2008

Evaluating the insecticidal genes and their expressed products in Bacillus thuringiensis strains by combining PCR with mass spectrometry.

Yunjun Sun; Zujiao Fu; Xuezhi Ding; Liqiu Xia

ABSTRACT By a combination of PCR and mass spectrometry, a total of five cry genes (cry1Aa, cry1Ac, cry2Aa, cry2Ab, and cry1Ia) were detected in genomic DNA from the wild-type Bacillus thuringiensis strain 4.0718, and three protoxins (Cry1Aa, Cry1Ac, and Cry2Aa) were identified in the strains parasporal crystals. These results indicated that this complementary method may be useful in evaluating B. thuringiensis strains at both the gene and protein levels.


Applied and Environmental Microbiology | 2012

Proteomic Analysis of Bacillus thuringiensis at Different Growth Phases by Using an Automated Online Two-Dimensional Liquid Chromatography-Tandem Mass Spectrometry Strategy

Shaoya Huang; Xuezhi Ding; Yunjun Sun; Qi Yang; Xiuqing Xiao; Zhenping Cao; Liqiu Xia

ABSTRACT The proteome of a new Bacillus thuringiensis subsp. kurstaki strain, 4.0718, from the middle vegetative (T 1), early sporulation (T 2), and late sporulation (T 3) phases was analyzed using an integrated liquid chromatography (LC)-based protein identification system. The system comprised two-dimensional (2D) LC coupled with nanoscale electrospray ionization (ESI) tandem mass spectrometry (MS/MS) on a high-resolution hybrid mass spectrometer with an automated data analysis system. After deletion of redundant proteins from the different batches and B. thuringiensis subspecies, 918, 703, and 778 proteins were identified in the respective three phases. Their molecular masses ranged from 4.6 Da to 477.4 Da, and their isoelectric points ranged from 4.01 to 11.84. Function clustering revealed that most of the proteins in the three phases were functional metabolic proteins, followed by proteins participating in cell processes. Small molecular and macromolecular metabolic proteins were further classified according to the Kyoto Encyclopedia of Genes and Genome and BioCyc metabolic pathway database. Three protoxins (Cry2Aa, Cry1Aa, and Cry1Ac) as well as a series of potential intracellular active factors were detected. Many significant proteins related to spore and crystal formation, including sporulation proteins, help proteins, chaperones, and so on, were identified. The expression patterns of two identified proteins, CotJc and glutamine synthetase, were validated by Western blot analysis, which further confirmed the MS results. This study is the first to use shotgun technology to research the proteome of B. thuringiensis. Valuable experimental data are provided regarding the methodology of analyzing the B. thuringiensis proteome (which can be used to produce insecticidal crystal proteins) and have been added to the related protein database.


Proteome Science | 2011

Comparative Proteomic Analysis of saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield

Yushuang Luo; Xuezhi Ding; Liqiu Xia; Fan Huang; Wenping Li; Shaoya Huang; Ying Tang; Yunjun Sun

BackgroundSaccharopolyspora spinosa produces the environment-friendly biopesticide spinosad, a mixture of two polyketide-derived macrolide active ingredients called spinosyns A and D. Therefore considerable interest is in the improvement of spinosad production because of its low yield in wild-type S. spinosa. Recently, a spinosad-hyperproducing PR2 strain with stable heredity was obtained from protoplast regeneration of the wild-type S. spinosa SP06081 strain. A comparative proteomic analysis was performed on the two strains during the first rapid growth phase (RG1) in seed medium (SM) by using label-free quantitative proteomics to investigate the underlying mechanism leading to the enhancement of spinosad yield.ResultsIn total, 224 proteins from the SP06081 strain and 204 proteins from the PR2 strain were unambiguously identified by liquid chromatography-tandem mass spectrometry analysis, sharing 140 proteins. A total of 12 proteins directly related to spinosad biosynthesis were identified from the two strains in RG1. Comparative analysis of the shared proteins revealed that approximately 31% of them changed their abundance significantly and fell in all of the functional groups, such as tricarboxylic acid cycles, glycolysis, biosynthetic processes, catabolic processes, transcription, translation, oxidation and reduction. Several key enzymes involved in the synthesis of primary metabolic intermediates used as precursors for spinosad production, energy supply, polyketide chain assembly, deoxysugar methylation, and antioxidative stress were differentially expressed in the same pattern of facilitating spinosad production by the PR2 strain. Real-time reverse transcriptase polymerase chain reaction analysis revealed that four of five selected genes showed a positive correlation between changes at the translational and transcriptional expression level, which further confirmed the proteomic analysis.ConclusionsThe present study is the first comprehensive and comparative proteome analysis of S. spinosa strains. Our results highlight the differentially expressed proteins between the two S. spinosa strains and provide some clues to understand the molecular and metabolic mechanisms that could lead to the increased spinosad production yield.


Current Microbiology | 2011

A Cry1Ac toxin variant generated by directed evolution has enhanced toxicity against Lepidopteran insects.

Shiping Shan; Youming Zhang; Xuezhi Ding; Shengbiao Hu; Yunjun Sun; Ziquan Yu; Shiquan Liu; Zhou Zhu; Liqiu Xia

Cry1Ac insecticidal crystal proteins produced by Bacillus thuringiensis (Bt) have become an important natural biological agent for the control of lepidopteran insects. In this study, a cry1Ac toxin gene from Bacillus thuringiensis 4.0718 was modified by using error-prone PCR, staggered extension process (StEP) shuffling combined with Red/ET homologous recombination to investigate the insecticidal activity of delta-endotoxin Cry1Ac. A Cry1Ac toxin variant (designated as T524N) screened by insect bioassay showed increased insecticidal activity against Spodoptera exigua larvae while its original insecticidal activity against Helicoverpa armigera larvae was still retained. The mutant toxin T524N had one amino acid substitution at position 524 relative to the original Cry1Ac toxin, and it can accumulate within the acrystalliferous strain Cry-B and form more but a little smaller bipyramidal crystals than the original Cry1Ac toxin. Analysis of theoretical molecular models of mutant and original Cry1Ac proteins indicated that the mutation T524N located in the loop linking β16–β17 of domain III in Cry1Ac toxin happens in the fourth conserved block which is an arginine-rich region to form a highly hydrophobic surface involving interaction with receptor molecules. This study showed for the first time that single mutation T524N played an essential role in the insecticidal activity. This finding provides the biological evidence of the structural function of domain III in insecticidal activity of the Cry1Ac toxin, which probably leads to a deep understanding between the interaction of toxic proteins and receptor macromolecules.


PLOS ONE | 2015

Comparative analysis of genomics and proteomics in Bacillus thuringiensis 4.0718.

Jie Rang; Hao He; Ting Wang; Xuezhi Ding; Mingxing Zuo; Meifang Quan; Yunjun Sun; Ziquan Yu; Shengbiao Hu; Liqiu Xia

Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for promoting the application of proteogenomics in the life sciences.


The Scientific World Journal | 2012

Proteomic Analysis of Bacillus thuringiensis Strain 4.0718 at Different Growth Phases

Xiaohui Li; Xuezhi Ding; Liqiu Xia; Yunjun Sun; Can Yuan; Jia Yin

The growth process of Bacillus thuringiensis Bt4.0718 strain was studied using proteomic technologies. The proteins of Bt whole cells at three phases—middle vegetative, early sporulation, and late sporulation—were extracted with lysis buffer, followed with separation by 2-DE and identified by MALDI-TOF/TOF MS. Bioactive factors such as insecticidal crystal proteins (ICPs) including Cry1Ac(3), Cry2Aa, and BTRX28, immune inhibitor (InhA), and InhA precursor were identified. InhA started to express at the middle vegetative phase, suggesting its contribution to the survival of Bt in the host body. At the early sporulation phase, ICPs started their expression. CotJC, OppA, ORF1, and SpoIVA related to the formation of crystals and spores were identified, the expression characteristics of which ensured the stable formation of crystals and spores. This study provides an important foundation for further exploration of the stable expression of ICPs, the smooth formation of crystals, and the construction of recombinant strains.

Collaboration


Dive into the Yunjun Sun's collaboration.

Top Co-Authors

Avatar

Liqiu Xia

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Xuezhi Ding

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Shengbiao Hu

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ziquan Yu

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Zujiao Fu

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Jie Rang

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Qi Yang

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Wenping Li

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiangtao Mo

Hunan Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge