Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ziquan Yu is active.

Publication


Featured researches published by Ziquan Yu.


Journal of Invertebrate Pathology | 2015

The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla.

Ziquan Yu; Jing Xiong; Qiaoni Zhou; Haiyan Luo; Shengbiao Hu; Liqiu Xia; Ming Sun; Lin Li; Ziniu Yu

Cry6A toxin from Bacillus thuringiensis is a representative nematicidal crystal protein with a variety of nematicidal properties to free-living nematode Caenorhabditis elegans. Cry6A shares very low homology and different structure with Cry5B, another representative nematicidal crystal protein, and probably acts in a distinct pathway. All these strongly indicate that Cry6A toxin is likely a potent candidate for nematicide. The present study dealt with global investigation to determine the detrimental impacts of Cry6Aa2 toxin on Meloidogyne hapla, a root-knot nematode, and evaluated its biocontrol efficacy in pot experiment. Obtained results indicated that Cry6Aa2 toxin exhibits obvious toxicity to second-stage juvenile of M. hapla, and significantly inhibits egg hatch, motility, and penetration to host plant. Pot experiment suggested that soil drenching with spore-crystal mixture of Cry6Aa2 can clearly lighten the disease of root-knot nematode, including reduction of galling index and egg masses on host plant root, decreasing final population of nematode in soil. Moreover, application of Cry6Aa2 can obviously promote plant growth. These results demonstrated that Cry6Aa2 toxin is a promising nematicidal agent, and possesses great potential in plant-parasitic nematode management and construction of transgenic crop with constant resistance to nematode.


Microbial Cell Factories | 2014

Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa

Qi Yang; Xuezhi Ding; Xuemei Liu; Shuang Liu; Yunjun Sun; Ziquan Yu; Shengbiao Hu; Jie Rang; Hao He; Lian He; Liqiu Xia

BackgroundSaccharopolyspora spinosa is an important producer of antibiotic spinosad with clarified biosynthesis pathway but its complex regulation networks associated with primary metabolism and secondary metabolites production almost have never been concerned or studied before. The proteomic analysis of a novel Saccharopolyspora spinosa CCTCC M206084 was performed and aimed to provide a global profile of regulatory proteins.ResultsTwo-dimensional-liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1090, 1166, 701, and 509 proteins from four phases respectively, i.e., the logarithmic growth phase (T1), early stationary phase (T2), late stationary phase (T3), and decline phase (T4). Among the identified proteins, 1579 were unique to the S. spinosa proteome, including almost all the enzymes for spinosad biosynthesis. Trends in protein expression over the various time phases were deduced from using the modified protein abundance index (PAI), revealed the importance of stress pathway proteins and other global regulatory network proteins during spinosad biosynthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis followed by one-dimensional LC-MS/MS identification revealed similar trend of protein expression from four phases with the results of semi-quantification by PAI. qRT-PCR analysis revealed that 6 different expressed genes showed a positive correlation between changes at translational and transcriptional expression level. Expression of three proteins that likely promote spinosad biosynthesis, namely, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase (MHSM), glutamine synthetase (GS) and cyclic nucleotide-binding domain-containing protein (CNDP) was validated by western blot, which confirmed the results of proteomic analysis.ConclusionsThis study is the first systematic analysis of the S. spinosa proteome during fermentation and its valuable proteomic data of regulatory proteins may be used to enhance the production yield of spinosad in future studies.


Current Microbiology | 2011

A Cry1Ac toxin variant generated by directed evolution has enhanced toxicity against Lepidopteran insects.

Shiping Shan; Youming Zhang; Xuezhi Ding; Shengbiao Hu; Yunjun Sun; Ziquan Yu; Shiquan Liu; Zhou Zhu; Liqiu Xia

Cry1Ac insecticidal crystal proteins produced by Bacillus thuringiensis (Bt) have become an important natural biological agent for the control of lepidopteran insects. In this study, a cry1Ac toxin gene from Bacillus thuringiensis 4.0718 was modified by using error-prone PCR, staggered extension process (StEP) shuffling combined with Red/ET homologous recombination to investigate the insecticidal activity of delta-endotoxin Cry1Ac. A Cry1Ac toxin variant (designated as T524N) screened by insect bioassay showed increased insecticidal activity against Spodoptera exigua larvae while its original insecticidal activity against Helicoverpa armigera larvae was still retained. The mutant toxin T524N had one amino acid substitution at position 524 relative to the original Cry1Ac toxin, and it can accumulate within the acrystalliferous strain Cry-B and form more but a little smaller bipyramidal crystals than the original Cry1Ac toxin. Analysis of theoretical molecular models of mutant and original Cry1Ac proteins indicated that the mutation T524N located in the loop linking β16–β17 of domain III in Cry1Ac toxin happens in the fourth conserved block which is an arginine-rich region to form a highly hydrophobic surface involving interaction with receptor molecules. This study showed for the first time that single mutation T524N played an essential role in the insecticidal activity. This finding provides the biological evidence of the structural function of domain III in insecticidal activity of the Cry1Ac toxin, which probably leads to a deep understanding between the interaction of toxic proteins and receptor macromolecules.


Letters in Applied Microbiology | 2014

Bacillus thuringiensis Cry6A exhibits nematicidal activity to Caenorhabditis elegans bre mutants and synergistic activity with Cry5B to C. elegans

Ziquan Yu; Haiyan Luo; Jing Xiong; Qiaoni Zhou; Liqiu Xia; Ming Sun; Lin Li

The group of nematicidal crystal protein Cry6A shares very low identity and exhibits different structure with Cry5B, another well‐studied group of nematicidal crystal protein produced by Bacillus thuringiensis. In this study, we assayed the susceptibility of bre mutants (Caenorhabditis elegans with resistance to Cry5B) to Cry6Aa2 and examined the synergistic activity between Cry6Aa2 and Cry5Ba2. Our results show that all bre mutants are susceptible to Cry6Aa2 on the lethal activity, growth inhibition, fertility and exhibit no cross‐resistance to Cry6Aa2. Moreover, all combinations of Cry6Aa2 and Cry5Ba2 with serial ratios exhibit significant synergism to C. elegans, and the highest synergistic effect was observed when Cry6Aa2 and Cry5Ba2 were mixed with a ration of 4 : 1. The susceptibility of bre mutants to Cry6A and synergistic activity between Cry6A and Cry5B may be attributed to the diverse action mode, because of different structure of the two nematicidal crystal protein toxins.


World Journal of Microbiology & Biotechnology | 2015

Systemic nematicidal activity and biocontrol efficacy of Bacillus firmus against the root-knot nematode Meloidogyne incognita

Jing Xiong; Qiaoni Zhou; Haiyan Luo; Liqiu Xia; Lin Li; Ming Sun; Ziquan Yu

A strain of marine bacterium Bacillus firmus YBf-10 with nematicidal activity was originally isolated by our group. In the present study, the systemic nematicidal activity and biocontrol efficacy in pot experiment of B. firmus YBf-10 were investigated. Our results showed that YBf-10 exhibits systemic nematicidal activity against Meloidogyne incognita, including lethal activity, inhibition of egg hatch and motility. Pot experiment suggested that soil drenching with YBf-10 efficiently reduced damage of M. incognita to tomato plants, such as reduction of galls, egg masses on roots, and final nematode population in soil; and moreover, YBf-10 significantly promoted host plant growth. In addition, our results also indicated that the systemic nematicidal activity is likely attributed to the secondary metabolites produced by YBf-10. The obtained results of the current study confirmed that B. firmus YBf-10 is a promising nematicidal agent, and has great potential in plant-parasitic nematicidal management.


PLOS ONE | 2015

Comparative analysis of genomics and proteomics in Bacillus thuringiensis 4.0718.

Jie Rang; Hao He; Ting Wang; Xuezhi Ding; Mingxing Zuo; Meifang Quan; Yunjun Sun; Ziquan Yu; Shengbiao Hu; Liqiu Xia

Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for promoting the application of proteogenomics in the life sciences.


Fems Microbiology Letters | 2011

Transcription of gene in an acrystalliferous strain of Bacillus thuringiensis XBU001 positively regulated by the metalloprotease camelysin gene at the onset of stationary phase

Jia Yin; Xuezhi Ding; Liqiu Xia; Ziquan Yu; Yuan Lv; Shengbiao Hu; Shaoya Huang; Zhenping Cao; Xiuqing Xiao

The calY gene, encoding metalloprotease camelysin in the Bacillus thuringiensis acrystalliferous strain XBU001, was amplified and sequenced. The camelysin from the calY sequence was 199 amino acids in size (c. 22 000 Da). The temperature-sensitive plasmid pKESX was used to construct a metalloprotease camelysin-deficient strain of B. thuringiensis. The calY gene was replaced by an erythromycin-resistant gene in KCTF. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and MS analysis showed that the metalloprotease InhA was not expressed after knocking out the gene calY. The temperature-sensitive plasmid pKPC was used to construct a metalloprotease camelysin complementation strain KCTFC. The InhA protein was found in KCTFC. Analysis of the expression of InhA in the wild-type strain KCTF12, camelysin-deficient and complementation strains indicated that inhA expression depended on camelysin. Although camelysin did not directly regulate the expression of the InhA through binding to the promoter of the inhA, the results suggest that camelysin can positively regulate the expression of the InhA protein.


Applied Microbiology and Biotechnology | 2018

Impact on strain growth and butenyl-spinosyn biosynthesis by overexpression of polynucleotide phosphorylase gene in Saccharopolyspora pogona

Li Li; Jie Rang; Haochen He; Siying He; Zhudong Liu; Jianli Tang; Jie Xiao; Lian He; Shengbiao Hu; Ziquan Yu; Xuezhi Ding; Liqiu Xia

Polynucleotide phosphorylase is a highly conserved protein found in bacteria and fungi that can regulate the transcription of related enzymes involved in amino acid metabolism, organic acid metabolism, and cell biosynthesis. We studied the effect of polynucleotide phosphorylase on Saccharopolyspora pogona (S. pogona) growth and the synthesis of secondary metabolites. First, we generated the overexpression vector pOJ260-PermE-pnp via overlap extension PCR. The vector pOJ260-PermE-pnp was then introduced into S. pogona by conjugal transfer, thereby generating the recombination strain S. pogona-Pnp. Results showed that engineering strains possessed higher biomass than those of the wild-type strains. Moreover, the ability of these strains to produce spores on solid medium was stronger than that of the wild-type strains. HPLC results revealed that the butenyl-spinosyn yield in S. pogona-Pnp increased by 1.92-fold compared with that of S. pogona alone. These findings revealed that overexpression of polynucleotide phosphorylase effectively promoted butenyl-spinosyn biosynthesis in S. pogona. This result may be extended to other Streptomyces for strain improvement.


Scientific Reports | 2017

A Proteomic Analysis Provides Novel Insights into the Stress Responses of Caenorhabditis elegans towards Nematicidal Cry6A Toxin from Bacillus thuringiensis

Bing Wang; Haiwen Wang; Jing Xiong; Qiaoni Zhou; Huan Wu; Liqiu Xia; Lin Li; Ziquan Yu

Cry6A represents a novel family of nematicidal crystal proteins from Bacillus thuringiensis. It has distinctive architecture as well as mechanism of action from Cry5B, a highly focused family of nematicidal crystal proteins, and even from other insecticidal crystal proteins containing the conserved three-domain. However, how nematode defends against Cry6A toxin remains obscure. In this study, the global defense pattern of Caenorhabditis elegans against Cry6Aa2 toxin was investigated by proteomic analysis. In response to Cry6Aa2, 12 proteins with significantly altered abundances were observed from worms, participating in innate immune defense, insulin-like receptor (ILR) signaling pathway, energy metabolism, and muscle assembly. The differentially expressed proteins (DEPs) functioning in diverse biological processes suggest that a variety of defense responses participate in the stress responses of C. elegans to Cry6Aa2. The functional verifications of DEPs suggest that ILR signaling pathway, DIM-1, galectin LEC-6 all are the factors of defense responses to Cry6Aa2. Moreover, Cry6Aa2 also involves in accelerating the metabolic energy production which fulfills the energy demand for the immune responses. In brief, our findings illustrate the global pattern of defense responses of nematode against Cry6A for the first time, and provide a novel insight into the mechanism through which worms respond to Cry6A.


Fems Microbiology Letters | 2014

XaxAB-like binary toxin from Photorhabdus luminescens exhibits both insecticidal activity and cytotoxicity

Xu Zhang; Xiaofeng Hu; Yusheng Li; Xuezhi Ding; Qi Yang; Yunjun Sun; Ziquan Yu; Liqiu Xia; Shengbiao Hu

Collaboration


Dive into the Ziquan Yu's collaboration.

Top Co-Authors

Avatar

Liqiu Xia

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Shengbiao Hu

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Xuezhi Ding

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Yunjun Sun

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Jing Xiong

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Lin Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qiaoni Zhou

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Haiyan Luo

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Jie Rang

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Ming Sun

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge