Yunn-Hwen Gan
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yunn-Hwen Gan.
Molecular Microbiology | 2002
Yunn-Hwen Gan; Kim Lee Chua; Hui Hoon Chua; Boping Liu; Chung Shii Hii; Hwee Ling Chong; Patrick Tan
The environmental saphrophyte Burkholderia pseudomallei is the causative agent of melioidosis, a systemic, potentially life‐threatening condition endemic to many parts of south‐east Asia and northern Australia. We have used the soil nematode Caenorhabditis elegans as a model host to characterize the mechanisms by which this bacterium mounts a successful infection. We find that C. elegans is susceptible to a broad range of Burkholderia species, and that the virulence mechanisms used by this pathogen to kill nematodes may be similar to those used to infect mammals. We also find that the specific dynamics of the C. elegans–B. pseudomallei host–pathogen interaction can be highly influenced by environmental factors, and that nematode killing results at least in part from the presence of a diffusible toxin. Finally, by screening for bacterial mutants attenuated in their ability to kill C. elegans, we genetically identify several new potential virulence factors in B. pseudomallei. The use of C. elegans as a model host should greatly facilitate future investigations into how B. pseudomallei can interact with host organisms.
Infection and Immunity | 2002
Boping Liu; Ghee Chong Koo; Eu Hian Yap; Kim Lee Chua; Yunn-Hwen Gan
ABSTRACT Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease with protean clinical manifestations. The major route of infection is thought to be through subcutaneous inoculation of contaminated soil and water, although ingestion and inhalation of contaminated aerosols are also possible. This study examines infection through the intranasal route in a murine model to mimic infection through inhalation. Two strains of mice, C57BL/6 and BALB/c, exhibit differential susceptibilities to the infection, with the C57BL/6 mice being considerably more resistant. To examine host factors that could contribute to this difference, bacterial loads and cytokine profiles in the two strains of mice were compared. We found that infected BALB/c mice exhibited higher bacterial loads in the lung and spleen and that they produced significantly higher levels of gamma interferon (IFN-γ) in the serum than C57BL/6 mice. Although tumor necrosis factor alpha and interleukin-1 could be detected in the nasal washes and sera of both strains of mice, the production in serum was transient and much lower than that of IFN-γ. C57BL/6 mice also exhibited memory responses to bacteria upon reinfection, with the production of serum immunoglobulin G (IgG) and mucosal IgA antibodies. Thus, it is possible that the production of systemic and mucosal antibodies is important for protection against disease in C57BL/6 mice.
Journal of Biological Chemistry | 2007
Zhiyong Ye; Yunn-Hwen Gan
Heat shock proteins (Hsp) 60 and 70 have been intensively studied for their ability to activate innate immunity. Heat shock proteins had been shown to induce the activation of dendritic cells, T cells, and B cells. However, the possible contamination of endotoxin in heat shock protein preparations makes their function as an activator of immune system ambiguous. Here, we examined the ability of bacterial Hsp60 and Hsp70 to activate Jurkat T cells and primary T cells. We found that Burkholderia pseudomallei Hsp70 and Mycobacterium tuberculosis Hsp70 could costimulate Jurkat T cells to make IL-2 and signal through TLR5. This costimulatory activity is not due to endotoxin or contaminants signaling via TLR2 nor TLR4. However, recombinant Hsp70 expressed in Escherichia coli ΔfliC strain completely lost its ability to costimulate T cells. Thus, the activation of T cells by recombinant Hsp70 is ascribed to flagellin contamination.
Journal of Bacteriology | 2005
Yan Song; Chao Xie; Yong-Mei Ong; Yunn-Hwen Gan; Kim-Lee Chua
BpsIR, a LuxIR quorum-sensing homolog, is required for optimal expression of virulence and secretion of exoproducts in Burkholderia pseudomallei. Cell density-dependent expression of bpsI and bpsR, the positive regulation of bpsIR expression by BpsR, and the synthesis of N-octanoyl-homoserine lactone (C8HSL) by BpsI are described in this report.
Journal of Immunology | 2010
Kai Soo Tan; Yahua Chen; Yaw-Chyn Lim; Gek-Yen Gladys Tan; Yichun Liu; Yan-Ting Lim; Paul A. MacAry; Yunn-Hwen Gan
Burkholderia pseudomallei is a Gram-negative saprophyte that is the causative agent of melioidosis, a severe infectious disease endemic in Northern Australia and Southeast Asia. This organism has sparked much scientific interest in the West because of its classification as a potential bioterrorism agent by the U.S. Centers for Disease Control and Prevention. However, relatively little is known about its pathogenesis. We demonstrate that B. pseudomallei actively inhibits NF-κB and type I IFN pathway activation, thereby downregulating host inflammatory responses. We found the virulence factor TssM to be responsible for this activity. TssM interferes with the ubiquitination of critical signaling intermediates, including TNFR-associated factor-3, TNFR-associated factor-6, and IκBα. The expression but not secretion of TssM is regulated by the type III secretion system. We demonstrate that TssM is important for B. pseudomallei infection in vivo as inflammation in the tssM mutant-infected mice is more severe and corresponds to a more rapid death compared with wild-type bacteria-infected mice. Abs to TssM can be detected in the sera of melioidosis patients, indicating that TssM is functionally expressed in vivo and thus could contribute to bacterial pathogenesis in human melioidosis.
Journal of Clinical Investigation | 2012
Kai Soo Tan; Kok Onn Lee; Kee Chung Low; Akshamal Mihiranga Gamage; Yichun Liu; Gek-Yen Gladys Tan; Hui Qi Vanessa Koh; Sylvie Alonso; Yunn-Hwen Gan
Individuals with type 2 diabetes are at increased risk of acquiring melioidosis, a disease caused by Burkholderia pseudomallei infection. Although up to half of melioidosis patients have underlying diabetes, the mechanisms involved in this increased susceptibility are unknown. We found that B. pseudomallei-infected PBMCs from diabetic patients were impaired in IL-12p70 production, which resulted in decreased IFN-γ induction and poor bacterial killing. The defect was specific to the IL-12-IFN-γ axis. Defective IL-12 production was also observed during Mycobacterium tuberculosis infection, in which diabetes is likewise known to be a strong risk factor. In contrast, IL-12 production in diabetic cells was not affected upon Salmonella enterica infection or in response to TLR2, -3, -4, and -5 ligands. Poor IL-12 production correlated with a deficiency in intracellular reduced glutathione (GSH) concentrations in diabetic patients. Addition of GSH or N-acetylcysteine to PBMCs selectively restored IL-12 and IFN-γ production and improved bacterial killing. Furthermore, the depletion of GSH in mice led to increased susceptibility to melioidosis, reduced production of IL-12p70, and poorer disease outcome. Our data thus establish a link between GSH deficiency in diabetes and increased susceptibility to melioidosis that may open up new therapeutic avenues to protect diabetic patients against some intracellular bacterial pathogens.
The Journal of Infectious Diseases | 2008
Chung-Shii Hii; Guang Wen Sun; Jason W. K. Goh; Jinhua Lu; Mark P. Stevens; Yunn-Hwen Gan
Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease that can result in asymptomatic, chronic, or acute illness. In acute melioidosis, high levels of proinflammatory cytokines and chemokines are found in organs and blood, and neutrophils play a key role in controlling the infection. We showed that B. pseudomallei activates NF-kappaB via Toll-like receptor (TLR) 2, TLR4, and TLR5 but can also activate NF-kappaB and induce interleukin (IL)-8 without involving TLRs. TLR-independent activation depends on a functional Bsa type III secretion system (T3SS) and requires internalization. The mitogen-activated protein kinase (MAPK) inhibitors for p38 and c-Jun N-terminal kinase (JNK) severely impaired IL-8 induction by B. pseudomallei and reduced bacterial internalization. Furthermore, the T3SS mutant induced less JNK phosphorylation than did wild-type bacteria. Thus, in cells with no or low expression of TLRs, such as mucosal epithelial cells, B. pseudomallei can induce IL-8 via NF-kappaB and MAPK pathways, aided by Bsa T3SS.
Infection and Immunity | 2011
Yahua Chen; Jocelyn Wong; Guang Wen Sun; Yichun Liu; Gek-Yen Gladys Tan; Yunn-Hwen Gan
ABSTRACT Type III and type VI secretion systems (T3SSs and T6SSs, respectively) are critical virulence determinants in several Gram-negative pathogens. In Burkholderia pseudomallei, the T3SS-3 and T6SS-1 clusters have been implicated in bacterial virulence in mammalian hosts. We recently discovered a regulatory cascade that coordinately controls the expression of T3SS-3 and T6SS-1. BsaN is a central regulator located within T3SS-3 for the expression of T3SS-3 effectors and regulators for T6SS-1 such as VirA-VirG (VirAG) and BprC. Whereas T6SS-1 gene expression was completely dependent on BprC when bacteria were grown in medium, the expression inside host cells was dependent on the two-component sensor-regulator VirAG, with the exception of the tssAB operon, which was dependent primarily on BprC. VirAG and BprC initiate different transcriptional start sites within T6SS-1, and VirAG is able to activate the hcp1 promoter directly. We also provided novel evidence that virAG, bprC, and tssAB are critical for T6SS-1 function in macrophages. Furthermore, virAG and bprC regulator mutants were avirulent in mice, demonstrating the absolute dependence of T6SS-1 expression on these regulators in vivo.
Molecular Microbiology | 2010
Guang Wen Sun; Yahua Chen; Yichun Liu; Gek-Yen Gladys Tan; Catherine Ong; Patrick Tan; Yunn-Hwen Gan
A major and critical virulence determinant of many Gram‐negative bacterial pathogens is the Type III Secretion Systems (T3SS). T3SS3 in Burkholderia pseudomallei is critical for bacterial virulence in mammalian infection models but its regulation is unknown. B. pseudomallei is the causative agent of melioidosis, a potentially fatal disease endemic in Southeast Asia and northern Australia. While screening for bacterial transposon mutants with a defective T3SS function, we discovered a TetR family regulator (bspR) responsible for the control of T3SS3 gene expression. The bspR mutant exhibited significant virulence attenuation in mice. BspR acts through BprP, a novel transmembrane regulator located adjacent to the currently delineated T3SS3 region. BprP in turn regulates the expression of structural and secretion components of T3SS3 and the AraC family regulator bsaN. BsaN and BicA likely form a complex to regulate the expression of T3SS3 effectors and other regulators which in turn affect the expression of Type VI Secretion Systems (T6SS). The complete delineation of the bspR initiated T3SS regulatory cascade not only contributes to the understanding of B. pseudomallei pathogenesis but also provides an important example of how bacterial pathogens could co‐opt and integrate various regulatory motifs to form a new regulatory network adapted for its own purposes.
Infection and Immunity | 2009
Katrin Breitbach; Guang Wen Sun; Jens Köhler; Kristin Eske; Patimaporn Wongprompitak; Gladys Tan; Yichun Liu; Yunn-Hwen Gan; Ivo Steinmetz
ABSTRACT The gram-negative rod Burkholderia pseudomallei is the causative agent of melioidosis, a potentially fatal disease which is endemic in tropical and subtropical areas. The bacterium multiplies intracellularly within the cytosol, induces the formation of actin tails, and can spread directly from cell to cell. Recently, it has been shown that B. pseudomallei can induce caspase-1-dependent cell death in macrophages. The aim of the present study was to further elucidate the role of caspase-1 during B. pseudomallei infection. In vivo experiments with caspase-1−/− mice revealed a high susceptibility to B. pseudomallei challenge. This phenotype was associated with a significantly higher bacterial burden 2 days after infection and decreased gamma interferon (IFN-γ) and interleukin-18 cytokine levels 24 h after infection compared to control animals. caspase-1−/− bone marrow-derived macrophages (BMM) exhibited strong caspase-3 expression and reduced cell damage compared to wild-type (WT) cells during early B. pseudomallei infection, indicating “classical” apoptosis, whereas WT BMM showed signs of rapid caspase-1-dependent cell death. Moreover, we found that caspase-1−/− BMM had a strongly increased bacterial burden compared to WT cells 3 h after infection under conditions where no difference in cell death could be observed between both cell populations at this time point. We therefore suggest that caspase-1-dependent rapid cell death might contribute to resistance by reducing the intracellular niche for B. pseudomallei, but, in addition, caspase-1 might also have a role in controlling intracellular replication of B. pseudomallei in macrophages. Moreover, caspase-1-dependent IFN-γ production is likely to contribute to resistance in murine melioidosis.