Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where YunXiang Chu is active.

Publication


Featured researches published by YunXiang Chu.


Nature | 2010

Quantum entanglement between an optical photon and a solid-state spin qubit

Emre Togan; YunXiang Chu; Alexei Trifonov; Liang Jiang; Jeronimo R. Maze; Lilian Childress; M. V. G. Dutt; Anders S. Sørensen; P. R. Hemmer; A. S. Zibrov; Mikhail D. Lukin

Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.


Nature | 2012

Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice

Peter Tsai; Court Hull; YunXiang Chu; Emily Greene-Colozzi; Abbey R. Sadowski; Jarrett M. Leech; Jason Steinberg; Jacqueline N. Crawley; Wade G. Regehr; Mustafa Sahin

Autism spectrum disorders (ASDs) are highly prevalent neurodevelopmental disorders, but the underlying pathogenesis remains poorly understood. Recent studies have implicated the cerebellum in these disorders, with post-mortem studies in ASD patients showing cerebellar Purkinje cell (PC) loss, and isolated cerebellar injury has been associated with a higher incidence of ASDs. However, the extent of cerebellar contribution to the pathogenesis of ASDs remains unclear. Tuberous sclerosis complex (TSC) is a genetic disorder with high rates of comorbid ASDs that result from mutation of either TSC1 or TSC2, whose protein products dimerize and negatively regulate mammalian target of rapamycin (mTOR) signalling. TSC is an intriguing model to investigate the cerebellar contribution to the underlying pathogenesis of ASDs, as recent studies in TSC patients demonstrate cerebellar pathology and correlate cerebellar pathology with increased ASD symptomatology. Functional imaging also shows that TSC patients with ASDs display hypermetabolism in deep cerebellar structures, compared to TSC patients without ASDs. However, the roles of Tsc1 and the sequelae of Tsc1 dysfunction in the cerebellum have not been investigated so far. Here we show that both heterozygous and homozygous loss of Tsc1 in mouse cerebellar PCs results in autistic-like behaviours, including abnormal social interaction, repetitive behaviour and vocalizations, in addition to decreased PC excitability. Treatment of mutant mice with the mTOR inhibitor, rapamycin, prevented the pathological and behavioural deficits. These findings demonstrate new roles for Tsc1 in PC function and define a molecular basis for a cerebellar contribution to cognitive disorders such as autism.


Nature | 2011

Laser cooling and real-time measurement of the nuclear spin environment of a solid-state qubit

Emre Togan; YunXiang Chu; Atac Imamoglu; Mikhail D. Lukin

Control over quantum dynamics of open systems is one of the central challenges in quantum science and engineering. Coherent optical techniques, such as coherent population trapping involving dark resonances, are widely used to control quantum states of isolated atoms and ions. In conjunction with spontaneous emission, they allow for laser cooling of atomic motion, preparation and manipulation of atomic states, and rapid quantum optical measurements that are essential for applications in metrology. Here we show that these techniques can be applied to monitor and control individual atom-like impurities, and their local environment, in the solid state. Using all-optical manipulation of the electronic spin of an individual nitrogen–vacancy colour centre in diamond, we demonstrate optical cooling, real-time measurement and conditional preparation of its nuclear spin environment by post-selection. These methods offer potential applications ranging from all-optical nanomagnetometry to quantum feedback control of solid-state qubits, and may lead to new approaches for quantum information storage and processing


Neuron | 2011

Calcium-Dependent Isoforms of Protein Kinase C Mediate Posttetanic Potentiation at the Calyx of Held

Diasynou Fioravante; YunXiang Chu; Michael H. Myoga; Michael Leitges; Wade G. Regehr

High-frequency stimulation leads to a transient increase in the amplitude of evoked synaptic transmission that is known as posttetanic potentiation (PTP). Here we examine the roles of the calcium-dependent protein kinase C isoforms PKCα and PKCβ in PTP at the calyx of Held synapse. In PKCα/β double knockouts, 80% of PTP is eliminated, whereas basal synaptic properties are unaffected. PKCα and PKCβ produce PTP by increasing the size of the readily releasable pool of vesicles evoked by high-frequency stimulation and by increasing the fraction of this pool released by the first stimulus. PKCα and PKCβ do not facilitate presynaptic calcium currents. The small PTP remaining in double knockouts is mediated partly by an increase in miniature excitatory postsynaptic current amplitude and partly by a mechanism involving myosin light chain kinase. These experiments establish that PKCα and PKCβ are crucial for PTP and suggest that long-lasting presynaptic calcium increases produced by tetanic stimulation may activate these isoforms to produce PTP.


The Journal of Neuroscience | 2013

Hyperpolarization Induces a Long-Term Increase in the Spontaneous Firing Rate of Cerebellar Golgi Cells

Court Hull; YunXiang Chu; Monica Thanawala; Wade G. Regehr

Golgi cells (GoCs) are inhibitory interneurons that influence the cerebellar cortical response to sensory input by regulating the excitability of the granule cell layer. While GoC inhibition is essential for normal motor coordination, little is known about the circuit dynamics that govern the activity of these cells. In particular, although GoC spontaneous spiking influences the extent of inhibition and gain throughout the granule cell layer, it is not known whether this spontaneous activity can be modulated in a long-term manner. Here we describe a form of long-term plasticity that regulates the spontaneous firing rate of GoCs in the rat cerebellar cortex. We find that membrane hyperpolarization, either by mGluR2 activation of potassium channels, or by somatic current injection, induces a long-lasting increase in GoC spontaneous firing. This spike rate plasticity appears to result from a strong reduction in the spike after hyperpolarization. Pharmacological manipulations suggest the involvement of calcium-calmodulin-dependent kinase II and calcium-activated potassium channels in mediating these firing rate increases. As a consequence of this plasticity, GoC spontaneous spiking is selectively enhanced, but the gain of evoked spiking is unaffected. Hence, this plasticity is well suited for selectively regulating the tonic output of GoCs rather than their sensory-evoked responses.


Neuron | 2014

Calcium-Dependent PKC Isoforms Have Specialized Roles in Short-Term Synaptic Plasticity

YunXiang Chu; Diasynou Fioravante; Michael Leitges; Wade G. Regehr

Posttetanic potentiation (PTP) is a widely observed form of short-term plasticity lasting for tens of seconds after high-frequency stimulation. Here we show that although protein kinase C (PKC) mediates PTP at the calyx of Held synapse in the auditory brainstem before and after hearing onset, PTP is produced primarily by an increased probability of release (p) before hearing onset, and by an increased readily releasable pool of vesicles (RRP) thereafter. We find that these mechanistic differences, which have distinct functional consequences, reflect unexpected differential actions of closely related calcium-dependent PKC isoforms. Prior to hearing onset, when PKCγ and PKCβ are both present, PKCγ mediates PTP by increasing p and partially suppressing PKCβ actions. After hearing onset, PKCγ is absent and PKCβ produces PTP by increasing RRP. In hearing animals, virally expressed PKCγ overrides PKCβ to produce PTP by increasing p. Thus, two similar PKC isoforms mediate PTP in distinctly different ways.


The Journal of Neuroscience | 2012

Calcium-Dependent Isoforms of Protein Kinase C Mediate Glycine-Induced Synaptic Enhancement at the Calyx of Held

YunXiang Chu; Diasynou Fioravante; Monica Thanawala; Michael Leitges; Wade G. Regehr

Depolarization of presynaptic terminals that arises from activation of presynaptic ionotropic receptors, or somatic depolarization, can enhance neurotransmitter release; however, the molecular mechanisms mediating this plasticity are not known. Here we investigate the mechanism of this enhancement at the calyx of Held synapse, in which presynaptic glycine receptors depolarize presynaptic terminals, elevate resting calcium levels, and potentiate release. Using knock-out mice of the calcium-sensitive PKC isoforms (PKCCa), we find that enhancement of evoked but not spontaneous synaptic transmission by glycine is mediated primarily by PKCCa. Measurements of calcium at the calyx of Held indicate that deficits in synaptic modulation in PKCCa knock-out mice occur downstream of presynaptic calcium increases. Glycine enhances synaptic transmission primarily by increasing the effective size of the pool of readily releasable vesicles. Our results reveal that PKCCa can enhance evoked neurotransmitter release in response to calcium increases caused by small presynaptic depolarizations.


eLife | 2014

Protein kinase C is a calcium sensor for presynaptic short-term plasticity

Diasynou Fioravante; YunXiang Chu; Arthur P.H. de Jong; Michael Leitges; Pascal S. Kaeser; Wade G. Regehr

In presynaptic boutons, calcium (Ca2+) triggers both neurotransmitter release and short-term synaptic plasticity. Whereas synaptotagmins are known to mediate vesicle fusion through binding of high local Ca2+ to their C2 domains, the proteins that sense smaller global Ca2+ increases to produce short-term plasticity have remained elusive. Here, we identify a Ca2+ sensor for post-tetanic potentiation (PTP), a form of plasticity thought to underlie short-term memory. We find that at the functionally mature calyx of Held synapse the Ca2+-dependent protein kinase C isoforms α and β are necessary for PTP, and the expression of PKCβ in PKCαβ double knockout mice rescues PTP. Disruption of Ca2+ binding to the PKCβ C2 domain specifically prevents PTP without impairing other PKCβ-dependent forms of synaptic enhancement. We conclude that different C2-domain-containing presynaptic proteins are engaged by different Ca2+ signals, and that Ca2+ increases evoked by tetanic stimulation are sensed by PKCβ to produce PTP. DOI: http://dx.doi.org/10.7554/eLife.03011.001


Neurology | 2013

Autistic-Like Behavior and Cerebellar Dysfunction in Purkinje Cell Tsc1 Mutant Mice (S15.001)

Peter Tsai; Court Hull; YunXiang Chu; Wade G. Regehr; Mustafa Sahin


eLife | 2018

Retraction: Protein kinase C is a calcium sensor for presynaptic short-term plasticity

Diasynou Fioravante; YunXiang Chu; Arthur P.H. de Jong; Michael Leitges; Pascal S. Kaeser; Wade G. Regehr

Collaboration


Dive into the YunXiang Chu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeronimo R. Maze

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge