Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunxie Wei is active.

Publication


Featured researches published by Yunxie Wei.


Scientific Reports | 2016

Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

Wei Hu; Hubiao Yang; Yan Yan; Yunxie Wei; Weiwei Tie; Zehong Ding; Jiao Zuo; Ming Peng; Kaimian Li

The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response.


Journal of Pineal Research | 2017

Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminata L.) highlight their novel role in melatonin-mediated plant response to Fusarium wilt.

Yunxie Wei; Wei Hu; Qiannan Wang; Hongqiu Zeng; Xiaolin Li; Yu Yan; Russel J. Reiter; Chaozu He; Haitao Shi

As one popular fresh fruit, banana (Musa acuminata) is cultivated in the worlds subtropical and tropical areas. In recent years, pathogen Fusarium oxysporum f. sp. cubense (Foc) has been widely and rapidly spread to banana cultivated areas, causing substantial yield loss. However, the molecular mechanism of banana response to Foc remains unclear, and functional identification of disease‐related genes is also very limited. In this study, nine 90 kDa heat‐shock proteins (HSP90s) were genomewide identified. Moreover, the expression profile of them in different organs, developmental stages, and in response to abiotic and fungal pathogen Foc were systematically analyzed. Notably, we found that the transcripts of 9 MaHSP90s were commonly regulated by melatonin (N‐acetyl‐5‐methoxytryptamine) and Foc infection. Further studies showed that exogenous application of melatonin improved banana resistance to Fusarium wilt, but the effect was lost when cotreated with HSP90 inhibitor (geldanamycin, GDA). Moreover, melatonin and GDA had opposite effect on auxin level in response to Foc4, while melatonin and GDA cotreated plants had no significant effect, suggesting the involvement of MaHSP90s in the cross talk of melatonin and auxin in response to fungal infection. Taken together, this study demonstrated that MaHSP90s are essential for melatonin‐mediated plant response to Fusarium wilt, which extends our understanding the putative roles of MaHSP90s as well as melatonin in the biological control of banana Fusarium wilt.


Frontiers in Plant Science | 2016

Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

Yunxie Wei; Haitao Shi; Zhiqiang Xia; Weiwei Tie; Zehong Ding; Yan Yan; Wenquan Wang; Wei Hu; Kaimian Li

The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.


Plant Physiology and Biochemistry | 2016

Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.

Haitao Shi; Yunxie Wei; Chaozu He

Melatonin (N-acetyl-5-methoxytryptamine) is an important regulator of circadian rhythms and immunity in animals. However, the diurnal changes of endogenous melatonin and melatonin-mediated diurnal change of downstream responses remain unclear in Arabidopsis. Using the publicly available microarray data, we found that the transcript levels of two melatonin synthesis genes (serotonin N-acetyltransferase (SNAT) and caffeate O-methyltransferase (COMT)) and endogenous melatonin level were regulated by diurnal cycles, with different magnitudes of change. Moreover, the transcripts of C-repeat-binding factors (CBFs)/Drought response element Binding 1 factors (DREB1s) were co-regulated by exogenous melatonin and diurnal changes, indicating the possible correlation among clock, endogenous melatonin level and AtCBFs expressions. Interestingly, diurnal change of plant immunity against Pst DC3000 and CIRCADIANCLOCK ASSOCIATED 1 (CCA1) expression were largely lost in AtCBFs knockdown line-amiR-1. Taken together, this study identifies the molecular pathway underlying the diurnal changes of immunity in Arabidopsis. Notably, the diurnal changes of endogenous melatonin may regulate corresponding changes of AtCBF/DREB1s expression and their underlying diurnal cycle of plant immunity and AtCCA1.


Frontiers in Plant Science | 2016

Fundamental Issues of Melatonin-Mediated Stress Signaling in Plants

Haitao Shi; Keli Chen; Yunxie Wei; Chaozu He

As a widely known hormone in animals, melatonin (N-acetyl-5-methoxytryptamine) has been more and more popular research topic in various aspects of plants. To summarize the these recent advances, this review focuses on the regulatory effects of melatonin in plant response to multiple abiotic stresses including salt, drought, cold, heat and oxidative stresses and biotic stress such as pathogen infection. We highlight the changes of endogenous melatonin levels under stress conditions, and the extensive metabolome, transcriptome, and proteome reprogramming by exogenous melatonin application. Moreover, melatonin-mediated stress signaling and underlying mechanism in plants are extensively discussed. Much more is needed to further study in detail the mechanisms of melatonin-mediated stress signaling in plants.


Journal of Pineal Research | 2016

Melatonin mediates the stabilization of DELLA proteins to repress the floral transition in Arabidopsis.

Haitao Shi; Yunxie Wei; Qiannan Wang; Russel J. Reiter; Chaozu He

Precise floral transition from vegetative growth phase to reproductive growth phase is very important in plant life cycle. In flowering genetic pathways, DELLA proteins are master transcriptional regulators of gibberelic acid (GA) pathway, and FLOWERING LOCUS C (FLC) is a core repressor of vernalization pathway as well as downstream of DELLAs. As a crucial messenger in plants, the possible involvement of melatonin (N‐acetyl‐5‐methoxytryptamine) in flowering and underlying molecular mechanism are unknown in Arabidopsis. In this study, we found that exogenous melatonin treatment delayed floral transition in Arabidopsis. Exogenous melatonin treatment conferred protein stabilizations of DELLAs [REPRESSOR of ga1‐3 (RGA) and RGA‐LIKE3 (RGL3)], without regulating the transcripts of DELLAs and endogenous GA level. Notably, exogenous melatonin delayed plant flowering and DELLA‐activated transcripts of FLC were alleviated in della mutants, and those were exacerbated in DELLA overexpressing plants. Taken together, this study provides direct link between melatonin and floral transition, and indicates the novel involvement of DELLAs‐activated FLC in melatonin‐mediated flowering in Arabidopsis.


Frontiers in Plant Science | 2016

Melatonin Regulates Root Meristem by Repressing Auxin Synthesis and Polar Auxin Transport in Arabidopsis

Qiannan Wang; Bang An; Yunxie Wei; Russel J. Reiter; Haitao Shi; Hongli Luo; Chaozu He

Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in regulating both biotic and abiotic stress tolerance, biological rhythms, plant growth and development. Sharing the same substrate (tryptophan) for the biosynthesis, melatonin and auxin also have similar effects in plant development. However, the specific function of melatonin in modulating plant root growth and the relationship between melatonin and auxin as well as underlying mechanisms are still unclear. In this study, we found high concentration of melatonin remarkably inhibited root growth in Arabidopsis by reducing root meristem size. Further studies showed that melatonin negatively regulated auxin biosynthesis, the expression of PINFORMED (PIN) proteins as well as auxin response in Arabidopsis. Moreover, the root growth of the triple mutant pin1pin3pin7 was more tolerant than that of wild-type in response to melatonin treatment, suggesting the essential role of PIN1/3/7 in melatonin-mediated root growth. Combination treatment of melatonin and 5-Triiodobenzoic acid (TIBA) did not enhance melatonin-mediated reduction of root meristem size, indicating that polar auxin transport (PAT) may be necessary for the regulation of root meristem size by melatonin treatment. Taken together, this study indicates that melatonin regulates root growth in Arabidopsis, through auxin synthesis and polar auxin transport, at least partially.


Frontiers in Plant Science | 2016

Comparative Transcriptional Profiling of Melatonin Synthesis and Catabolic Genes Indicates the Possible Role of Melatonin in Developmental and Stress Responses in Rice

Yunxie Wei; Hongqiu Zeng; Wei Hu; Lanzhen Chen; Chaozu He; Haitao Shi

As a well-known animal hormone, melatonin (N-acetyl-5-methoxytryptamine) is also involved in multiple plant biological processes, especially in various stress responses. Rice is one of the most important crops, and melatonin is taken in by many people everyday from rice. However, the transcriptional profiling of melatonin-related genes in rice is largely unknown. In this study, the expression patterns of 11 melatonin related genes in rice in different periods, tissues, in response to different treatments were synthetically analyzed using published microarray data. These results suggest that the melatonin-related genes may play important and dual roles in rice developmental stages. We highlight the commonly regulation of rice melatonin-related genes by abscisic acid (ABA), jasmonic acid (JA), various abiotic stresses and pathogen infection, indicating the possible role of these genes in multiple stress responses and underlying crosstalks of plant hormones, especially ABA and JA. Taken together, this study may provide insight into the association among melatonin biosynthesis and catabolic pathway, plant development and stress responses in rice. The profile analysis identified candidate genes for further functional characterization in circadian rhythm and specific stress responses.


Journal of Pineal Research | 2018

RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes

Yunxie Wei; Yanli Chang; Hongqiu Zeng; Guoyin Liu; Chaozu He; Haitao Shi

With 1 AP2 domain and 1 B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus‐induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of 3 melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation‐PCR in cassava leaf protoplasts and electrophoretic mobility shift assay. Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava and revealed a model of MeRAV1 and MeRAV2‐melatonin biosynthesis genes‐melatonin level in plant disease resistance against cassava bacterial blight.


Scientific Reports | 2016

Comprehensive transcriptional and functional analyses of melatonin synthesis genes in cassava reveal their novel role in hypersensitive-like cell death

Yunxie Wei; Wei Hu; Qiannan Wang; Wei Liu; Chunjie Wu; Hongqiu Zeng; Yu Yan; Xiaolin Li; Chaozu He; Haitao Shi

Melatonin is a widely known hormone in animals. Since melatonin was discovered in plants, more and more studies highlight its involvement in a wide range of physiological processes including plant development and stress responses. Many advances have been made in the terms of melatonin-mediated abiotic stress resistance and innate immunity in plants, focusing on model plants such as rice and Arabidopsis. In this study, 7 melatonin synthesis genes were systematically analyzed in cassava. Quantitative real-time PCR showed that all these genes were commonly regulated by melatonin, flg22, Xanthomonas axonopodis pv manihotis (Xam) and hydrogen peroxide (H2O2). Transient expression in Nicotiana benthamiana revealed the subcellular locations and possible roles of these melatonin synthesis genes. Notably, we highlight novel roles of these genes in hypersensitive-like cell death, as confirmed by the results of several physiological parameters. Moreover, transient expression of these genes had significant effects on the transcripts of reactive oxygen species (ROS) accumulation and defense-related genes, and triggered the burst of callose depositions and papillae-associated plant defense, indicating the possible role of them in plant innate immunity. Taken together, this study reveals the comprehensive transcripts and putative roles of melatonin synthesis genes as well as melatonin in immune responses in cassava.

Collaboration


Dive into the Yunxie Wei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Hu

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russel J. Reiter

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen Liu

China Three Gorges University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaimian Li

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge