Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunyuan Xu is active.

Publication


Featured researches published by Yunyuan Xu.


Plant Physiology | 2007

Overexpression of an R1R2R3 MYB Gene, OsMYB3R-2, Increases Tolerance to Freezing, Drought, and Salt Stress in Transgenic Arabidopsis

Xiaoyan Dai; Yunyuan Xu; Qibin Ma; Wenying Xu; Tai Wang; Yongbiao Xue; Kang Chong

We used a cDNA microarray approach to monitor the expression profile of rice (Oryza sativa) under cold stress and identified 328 cold-regulated genes. Thirteen such genes encoding MYB, homeodomain, and zinc finger proteins with unknown functions showed a significant change in expression under 72-h cold stress. Among them, OsMYB3R-2 was selected for further study. Unlike most plant R2R3 MYB transcription factors, OsMYB3R-2 has three imperfect repeats in the DNA-binding domain, the same as in animal c-MYB proteins. Expression of OsMYB3R-2 was induced by cold, drought, and salt stress. The Arabidopsis (Arabidopsis thaliana) transgenic plants overexpressing OsMYB3R-2 showed increased tolerance to cold, drought, and salt stress, and the seed germination of transgenic plants was more tolerant to abscisic acid or NaCl than that of wild type. The expression of some clod-related genes, such as dehydration-responsive element-binding protein 2A, COR15a, and RCI2A, was increased to a higher level in OsMYB3R-2-overexpressing plants than in wild type. These results suggest that OsMYB3R-2 acts as a master switch in stress tolerance.


BMC Genomics | 2009

Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response.

Jingyu Zhang; Yunyuan Xu; Qing Huan; Kang Chong

BackgroundMicroRNAs (miRNAs) are endogenous small RNAs having large-scale regulatory effects on plant development and stress responses. Extensive studies of miRNAs have only been performed in a few model plants. Although miRNAs are proved to be involved in plant cold stress responses, little is known for winter-habit monocots. Brachypodium distachyon, with close evolutionary relationship to cool-season cereals, has recently emerged as a novel model plant. There are few reports of Brachypodium miRNAs.ResultsHigh-throughput sequencing and whole-genome-wide data mining led to the identification of 27 conserved miRNAs, as well as 129 predicted miRNAs in Brachypodium. For multiple-member conserved miRNA families, their sizes in Brachypodium were much smaller than those in rice and Populus. The genome organization of miR395 family in Brachypodium was quite different from that in rice. The expression of 3 conserved miRNAs and 25 predicted miRNAs showed significant changes in response to cold stress. Among these miRNAs, some were cold-induced and some were cold-suppressed, but all the conserved miRNAs were up-regulated under cold stress condition.ConclusionOur results suggest that Brachypodium miRNAs are composed of a set of conserved miRNAs and a large proportion of non-conserved miRNAs with low expression levels. Both kinds of miRNAs were involved in cold stress response, but all the conserved miRNAs were up-regulated, implying an important role for cold-induced miRNAs. The different size and genome organization of miRNA families in Brachypodium and rice suggest that the frequency of duplication events or the selection pressure on duplicated miRNAs are different between these two closely related plant species.


Plant Physiology | 2009

Enhanced Tolerance to Chilling Stress in OsMYB3R-2 Transgenic Rice Is Mediated by Alteration in Cell Cycle and Ectopic Expression of Stress Genes

Qibin Ma; Xiaoyan Dai; Yunyuan Xu; Jing Guo; Yaju Liu; Na Chen; Jun Xiao; Dajian Zhang; Zhihong Xu; Xiansheng Zhang; Kang Chong

MYB transcription factors play central roles in plant responses to abiotic stresses. How stress affects development is poorly understood. Here, we show that OsMYB3R-2 functions in both stress and developmental processes in rice (Oryza sativa). Transgenic plants overexpressing OsMYB3R-2 exhibited enhanced cold tolerance. Cold treatment greatly induced the expression of OsMYB3R-2, which encodes an active transcription factor. We show that OsMYB3R-2 specifically bound to a mitosis-specific activator cis-element, (T/C)C(T/C)AACGG(T/C)(T/C)A, a conserved sequence that was found in promoters of cyclin genes such as OsCycB1;1 and OsKNOLLE2. In addition, overexpression of OsMYB3R-2 in rice led to higher transcript levels of several G2/M phase-specific genes, including OsCycB1;1, OsCycB2;1, OsCycB2;2, and OsCDC20.1, than those in OsMYB3R-2 antisense lines or wild-type plants in response to cold treatment. Flow cytometry analysis revealed an increased cell mitotic index in overexpressed transgenic lines of OsMYB3R-2 after cold treatment. Furthermore, resistance to cold stress in the transgenic plants overexpressing OsCycB1;1 was also enhanced. The level of cellular free proline was increased in the overexpressed rice lines of OsMYB3R-2 and OsCycB1;1 transgenic plants compared with wild-type plants under the cold treatment. These results suggest that OsMYB3R-2 targets OsCycB1;1 and regulates the progress of the cell cycle during chilling stress. OsCPT1, which may be involved in the dehydration-responsive element-binding factor 1A pathway, showed the same transcription pattern in response to cold as did OsCycB1;1 in transgenic rice. Therefore, a cold resistance mechanism in rice could be mediated by regulating the cell cycle, which is controlled by key genes including OsMYB3R-2.


Cell | 2015

COLD1 Confers Chilling Tolerance in Rice

Yun Ma; Xiaoyan Dai; Yunyuan Xu; Wei Luo; Xiao-Ming Zheng; Dali Zeng; Yajun Pan; Xiaoli Lin; Huanhuan Liu; Dajian Zhang; Jun Xiao; Xiaoyu Guo; Shujuan Xu; Yuda Niu; Jingbo Jin; Hui Zhang; Xun Xu; Legong Li; Wen Wang; Qian Qian; Song Ge; Kang Chong

Rice is sensitive to cold and can be grown only in certain climate zones. Human selection of japonica rice has extended its growth zone to regions with lower temperature, while the molecular basis of this adaptation remains unknown. Here, we identify the quantitative trait locus COLD1 that confers chilling tolerance in japonica rice. Overexpression of COLD1(jap) significantly enhances chilling tolerance, whereas rice lines with deficiency or downregulation of COLD1(jap) are sensitive to cold. COLD1 encodes a regulator of G-protein signaling that localizes on plasma membrane and endoplasmic reticulum (ER). It interacts with the G-protein α subunit to activate the Ca(2+) channel for sensing low temperature and to accelerate G-protein GTPase activity. We further identify that a SNP in COLD1, SNP2, originated from Chinese Oryza rufipogon, is responsible for the ability of COLD(jap/ind) to confer chilling tolerance, supporting the importance of COLD1 in plant adaptation.


Planta | 2007

Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice

Kaimao Liu; Lei Wang; Yunyuan Xu; Na Chen; Qibin Ma; Fei Li; Kang Chong

Rice (Oryza sativa L.) plant is sensitive to chilling, particularly at early stages of seedling development. Here a novel cold-inducible gene, designated OsCOIN (Oryza sativacold-inducible), was isolated and characterized. Results showed that OsCOIN protein, a RING finger protein, was localized in both nuclear and cytoplasm membrane. OsCOIN is expressed in all rice organs and strongly induced by low temperature, ABA, salt and drought. Over-expression of OsCOIN in transgenic rice lines significantly enhanced their tolerance to cold, salt and drought, accompanied by an up-regulation of OsP5CS expression and an increase of cellular proline level.


Plant Physiology | 2004

Overexpression of OsRAA1 Causes Pleiotropic Phenotypes in Transgenic Rice Plants, including Altered Leaf, Flower, and Root Development and Root Response to Gravity

Lei Ge; Hui Chen; Jiafu Jiang; Yuan Zhao; Ming-Li Xu; Yunyuan Xu; Kehui Tan; Zhihong Xu; Kang Chong

There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1::GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1::GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature.


Plant Journal | 2009

OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice

Li Wang; Zhen Wang; Yunyuan Xu; Se-Hwan Joo; Seong-Ki Kim; Zhen Xue; Zhihong Xu; Zhi-Yong Wang; Kang Chong

Gibberellins (GAs) and brassinosteroids (BRs), two growth-promoting phytohormones, regulate many common physiological processes. Their interactions at the molecular level remain unclear. Here, we demonstrate that OsGSR1, a member of the GAST (GA-stimulated transcript) gene family, is induced by GA and repressed by BR. RNA interference (RNAi) transgenic rice plants with reduced OsGSR1 expression show phenotypes similar to plants deficient in BR, including short primary roots, erect leaves and reduced fertility. The OsGSR1 RNAi transgenic rice shows a reduced level of endogenous BR, and the dwarf phenotype could be rescued by the application of brassinolide. The yeast two-hybrid assay revealed that OsGSR1 interacts with DIM/DWF1, an enzyme that catalyzes the conversion from 24-methylenecholesterol to campesterol in BR biosynthesis. These results suggest that OsGSR1 activates BR synthesis by directly regulating a BR biosynthetic enzyme at the post-translational level. Furthermore, OsGSR1 RNAi plants show a reduced sensitivity to GA treatment, an increased expression of the GA biosynthetic gene OsGA20ox2, which is feedback inhibited by GA signaling, and an elevated level of endogenous GA: together, these suggest that OsGSR1 is a positive regulator of GA signaling. These results demonstrate that OsGSR1 plays important roles in both BR and GA pathways, and also mediates an interaction between the two signaling pathways.


Plant Biotechnology Journal | 2009

Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield

Dan Li; Lei Wang; Min Wang; Yunyuan Xu; Wei Luo; Yaju Liu; Zhihong Xu; Jia Li; Kang Chong

Generating a new variety of plant with erect-leaf is a critical strategy to improve rice grain yield, as plants with this trait can be dense-planted. The erect-leaf is a significant morphological trait partially regulated by Brassinosteroids (BRs) in rice plants. So far, only a few genes can be used for molecular breeding in rice. Here, we identified OsBAK1 as a potential gene to alter rice architecture. Based on rice genome sequences, four closely related homologs of Arabidopsis BAK1 (AtBAK1) gene were amplified. Phylogenetic analysis and suppression of a weak Arabidopsis mutant bri1-5 indicated that OsBAK1 (Os08g0174700) is the closest relative of AtBAK1. Genetic, physiological, and biochemical analyses all suggest that the function of OsBAK1 is conserved with AtBAK1. Overexpression of a truncated intracellular domain of OsBAK1, but not the extracellular domain of OsBAK1, resulted in a dwarfed phenotype, similar to the rice BR-insensitive mutant plants. The expression of OsBAK1 changed important agricultural traits of rice such as plant height, leaf erectness, grain morphologic features, and disease resistance responses. Our results suggested that a new rice variety with erect-leaf and normal reproduction can be generated simply by suppressing the expression level of OsBAK1. Therefore, OsBAK1 is a potential molecular breeding tool for improving rice grain yield by modifying rice architecture.


Nature Communications | 2013

The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14

Siyi Guo; Yunyuan Xu; Huanhuan Liu; Zhiwei Mao; Cui Zhang; Yan Ma; Qirui Zhang; Zheng Meng; Kang Chong

Rice tillering is a multigenic trait that influences grain yield, but its regulation molecular module is poorly understood. Here we report that OsMADS57 interacts with OsTB1 (TEOSINTE BRANCHED1) and targets D14 (Dwarf14) to control the outgrowth of axillary buds in rice. An activation-tagged mutant osmads57-1 and OsMADS57-overexpression lines showed increased tillers, whereas OsMADS57 antisense lines had fewer tillers. OsMIR444a-overexpressing lines exhibited suppressed OsMADS57 expression and tillering. Furthermore, osmads57-1 was insensitive to strigolactone treatment to inhibit axillary bud outgrowth, and OsMADS57’s function in tillering was dependent on D14. D14 expression was downregulated in osmads57-1, but upregulated in antisense and OsMIR444a-overexpressing lines. OsMADS57 bound to the CArG motif [C(A/T)TTAAAAAG] in the promoter and directly suppressed D14 expression. Interaction of OsMADS57 with OsTB1 reduced OsMADS57 inhibition of D14 transcription. Therefore, OsMIR444a-regulated OsMADS57, together with OsTB1, target D14 to control tillering. This regulation mechanism could have important application in rice molecular breeding programs focused on high grain yield.


PLOS ONE | 2008

OsLIC, a Novel CCCH-Type Zinc Finger Protein with Transcription Activation, Mediates Rice Architecture via Brassinosteroids Signaling

Lei Wang; Yunyuan Xu; Cui Zhang; Qibin Ma; Se-Hwan Joo; Seong-Ki Kim; Zhihong Xu; Kang Chong

Rice architecture is an important agronomic trait and a major limiting factor for its high productivity. Here we describe a novel CCCH-type zinc finger gene, OsLIC (Oraza sativa leaf and tiller angle increased controller), which is involved in the regulation of rice plant architecture. OsLIC encoded an ancestral and unique CCCH type zinc finge protein. It has many orthologous in other organisms, ranging from yeast to humane. Suppression of endogenous OsLIC expression resulted in drastically increased leaf and tiller angles, shortened shoot height, and consequently reduced grain production in rice. OsLIC is predominantly expressed in rice collar and tiller bud. Genetic analysis suggested that OsLIC is epistatic to d2-1, whereas d61-1 is epistatic to OsLIC. Interestingly, sterols were significantly higher in level in transgenic shoots than in the wild type. Genome-wide expression analysis indicated that brassinosteroids (BRs) signal transduction was activated in transgenic lines. Moreover, transcription of OsLIC was induced by 24-epibrassinolide. OsLIC, with a single CCCH motif, displayed binding activity to double-stranded DNA and single-stranded polyrA, polyrU and polyrG but not polyrC. It contains a novel conserved EELR domain among eukaryotes and displays transcriptional activation activity in yeast. OsLIC may be a transcription activator to control rice plant architecture.

Collaboration


Dive into the Yunyuan Xu's collaboration.

Top Co-Authors

Avatar

Kang Chong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huanhuan Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qibin Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiafu Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dajian Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Junhua Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Siyi Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shujuan Xu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge