Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunzhen Wu is active.

Publication


Featured researches published by Yunzhen Wu.


Chemistry: A European Journal | 2017

Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO2 Reduction

Jungang Hou; Shuyan Cao; Yunzhen Wu; Zhanming Gao; Fei Liang; Yiqing Sun; Zheshuai Lin; Licheng Sun

Inorganic perovskite quantum dots as optoelectronic materials have attracted enormous attention in light-harvesting and emitting devices. However, photocatalytic conversion based on inorganic perovskite halides has not been reported. Here, we have synthesized colloidal quantum dots (QDs, 3-12 nm) of cesium lead halide perovskites (CsPbBr3 ) as a new type of photocatalytic material. The band gap energies and photoluminescence (PL) spectra are tunable over the visible spectral region according to quantum size effects on an atomic scale. The increased carrier lifetime revealed by time-resolved PL spectra, indicates the efficient electron-hole separation and transfer. As expected, the CsPbBr3 QDs with high selectivity of greater than 99 % achieve an efficient yield of 20.9 μmol g-1 towards solar CO2 reduction. This work has opened a new avenue for inorganic colloidal perovskite materials as efficient photocatalysts to convert CO2 into valuable fuels.


Small | 2017

Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core–Shell Architecture: Highly Efficient and Durable Electrocatalysts for Overall Water Splitting

Jungang Hou; Yunzhen Wu; Shuyan Cao; Yiqing Sun; Licheng Sun

The development of active bifunctional electrocatalysts with low cost and earth-abundance toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a great challenge for overall water splitting. Herein, metallic Ni4 Mo nanoalloys are firstly implanted on the surface of NiMoOx nanowires array (NiMo/NiMoOx ) as metal/metal oxides hybrid. Inspired by the superiority of carbon conductivity, an ultrathin nitrogen-doped carbon sheath intercalated NiMo/NiMoOx (NC/NiMo/NiMoOx ) nanowires as integrated core-shell architecture are constructed. The integrated NC/NiMo/NiMoOx array exhibits an overpotential of 29 mV at 10 mA cm-2 and a low Tafel slope of 46 mV dec-1 for HER due to the abundant active sites, fast electron transport, low charge-transfer resistance, unique architectural structure and synergistic effect of carbon sheath, nanoalloys, and oxides. Moreover, as OER catalysts, the NC/NiMo/NiMoOx hybrids require an overpotential of 284 mV at 10 mA cm-2 . More importantly, the NC/NiMo/NiMoOx array as a highly active and stable electrocatalyst approaches ≈10 mA cm-2 at a voltage of 1.57 V, opening an avenue to the rational design and fabrication of the promising electrode materials with architecture structures toward the electrochemical energy storage and conversion.


ACS Applied Materials & Interfaces | 2017

Graphene Dots Embedded Phosphide Nanosheet-Assembled Tubular Arrays for Efficient and Stable Overall Water Splitting

Jungang Hou; Yiqing Sun; Shuyan Cao; Yunzhen Wu; Hong Chen; Licheng Sun

Bifunctional electrocatalysts are highly desired for overall water splitting. Herein, the design and fabrication of three-dimensional (3D) hierarchical earth-abundant transition bimetallic phosphide arrays constructed by one-dimensional tubular array that was derived from assembling two-dimensional nanosheet framework has been reported by tailoring the Co/Ni ratio and tunable morphologies, and zero-dimensional (0D) graphene dots were embedded on Co-Ni phosphide matrix to construct 0D/2D tubular array as a highly efficient electrode in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). On the basis of advanced merits, such as the high surface-active sites, well-dispersed graphene dots, and enhanced electron transfer capacity as well as the confinement effect of the graphene dots on the nanosheets, the integrated GDs/Co0.8Ni0.2P tubular arrays as anode and cathode exhibit excellent OER and HER performance. By use of GDs/Co0.8Ni0.2P arrays in the two-electrode setup of the device, a remarkable electrocatalytic performance for full water splitting has been achieved with a high current density of 10 mA cm-2 at 1.54 V and outstanding long-term operation stability in an alkaline environment, indicating a promising system based on nonprecious-metal electrocatalysts toward potential practical devices of overall water splitting.


Nano Energy | 2017

Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction

Jungang Hou; Shuyan Cao; Yunzhen Wu; Fei Liang; Yongfu Sun; Zheshuai Lin; Licheng Sun


Nano Energy | 2016

Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction

Jungang Hou; Shuyan Cao; Yunzhen Wu; Fei Liang; Lu Ye; Zheshuai Lin; Licheng Sun


Advanced Functional Materials | 2018

Promoting Active Sites in Core-Shell Nanowire Array as Mott-Schottky Electrocatalysts for Efficient and Stable Overall Water Splitting

Jungang Hou; Yiqing Sun; Yunzhen Wu; Shuyan Cao; Licheng Sun


ACS Catalysis | 2018

Vertically Aligned Oxygenated-CoS2–MoS2 Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting

Jungang Hou; Bo Zhang; Zhuwei Li; Shuyan Cao; Yiqing Sun; Yunzhen Wu; Zhanming Gao; Licheng Sun


Advanced Energy Materials | 2017

In Situ Phase-Induced Spatial Charge Separation in Core–Shell Oxynitride Nanocube Heterojunctions Realizing Robust Solar Water Splitting

Jungang Hou; Yunzhen Wu; Shuyan Cao; Fei Liang; Zheshuai Lin; Zhanming Gao; Licheng Sun


Advanced Energy Materials | 2018

Atomically Thin Mesoporous In2O3–x/In2S3 Lateral Heterostructures Enabling Robust Broadband‐Light Photo‐Electrochemical Water Splitting

Jungang Hou; Shuyan Cao; Yiqing Sun; Yunzhen Wu; Fei Liang; Zheshuai Lin; Licheng Sun


Advanced Functional Materials | 2018

Orienting Active Crystal Planes of New Class Lacunaris Fe2PO5 Polyhedrons for Robust Water Oxidation in Alkaline and Neutral Media

Yunzhen Wu; Yanan Meng; Jungang Hou; Shuyan Cao; Zhanming Gao; Zhijian Wu; Licheng Sun

Collaboration


Dive into the Yunzhen Wu's collaboration.

Top Co-Authors

Avatar

Jungang Hou

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Shuyan Cao

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Licheng Sun

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yiqing Sun

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhanming Gao

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Fei Liang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zheshuai Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Zhang

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhuwei Li

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yanan Meng

University of Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge