Yuping Tan
Monogram Biosciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuping Tan.
Diagnostic Molecular Pathology | 2009
Yining Shi; Weidong Huang; Yuping Tan; Xueguang Jin; Rajiv Dua; Elicia Penuel; Ali Mukherjee; Jeff Sperinde; Herjit Pannu; Ahmed Chenna; Lisa DeFazio-Eli; Sailaja Pidaparthi; Youssouf Badal; Gerald Wallweber; Lili Chen; Steve Williams; Hasan Tahir; Jeffrey S. Larson; Laurie Goodman; Jeannette M. Whitcomb; Christos J. Petropoulos; John W. Winslow
The availability of drugs targeting the EGFR/HER/erbB signaling pathway has created a need for diagnostics that accurately predict treatment responses. We have developed and characterized a novel assay to provide sensitive and quantitative measures of HER proteins and homodimers in formalin-fixed, paraffin-embedded (FFPE) cell lines and breast tumor tissues, to test these variables. In the VeraTag assay, HER proteins and homodimers are detected through the release of fluorescent tags conjugated to specific HER antibodies, requiring proximity to a second HER antibody. HER2 protein quantification was normalized to tumor area, and compared to receptor numbers in 12 human tumor cell lines determined by fluorescence-activated cell sorting (FACS), and with HER immunohistochemistry (IHC) test categories and histoscores in cell lines and 170 breast tumors. HER1 and HER2 expression levels determined by the VeraTag assay are proportional to receptor number over more than a 2 log10 range, and HER homodimer levels are consistent with crosslinking and immunoprecipitation results. VeraTag HER2 measurements of breast tumor tissue and cell lines correlate with standard IHC test categories (P<0.001). VeraTag HER2 levels also agree with IHC histoscores at lower HER2 protein levels, but are continuous and overlapping between IHC test categories, extending the dynamic range 5-fold to 10-fold at higher HER2 levels. The VeraTag assay specifically and reproducibly measures HER1 and HER2 protein and homodimers in FFPE tissues. The continuous measure of HER2 protein levels over a broad dynamic range, and the novel HER2 homodimer measure, are presently being assessed as predictive markers for responses to targeted HER2 therapy.
Diagnostic Molecular Pathology | 2009
Christine Desmedt; Jeff Sperinde; Fanny Piette; Weidong Huang; Xueguang Jin; Yuping Tan; Virginie Durbecq; Denis Larsimont; Rosa Giuliani; Colombe Chappey; Marc Buyse; John Winslow; Martine Piccart; Christos Sotiriou; Christos J. Petropoulos; Michael Bates
The selection of patients with HER2-positive breast cancer for treatment with trastuzumab is based on the measurement of HER2 protein expression by immunohistochemistry, or the presence of HER2 gene amplification by fluorescence in situ hybridization (FISH). By using multivariate analyses, we investigate the relationship between quantitative measurements of HER2 expression or HER2:HER2 dimers and objective response (Response Evaluation Criteria in Solid Tumors), time to progression, and breast cancer survival after trastuzumab treatment in a cohort of patients with metastatic breast cancer who were primarily selected for treatment by FISH. The VeraTag assay, a proximity-based assay designed to quantitate protein expression and dimerization in formalin-fixed, paraffin-embedded tissue specimens, was used to measure HER2 protein expression and HER2:HER2 dimer levels. In a Cox proportional hazards analysis, higher HER2 expression or HER2:HER2 dimer levels were both correlated with longer survival (P=0.0058 and P=0.016, respectively) after treatment with trastuzumab in a population of patients that were either FISH-positive (90%) or immunohistochemistry 3+ (10%). Patients with higher levels of HER2 expression or HER2:HER2 dimers seemed to derive little benefit from the addition of concomitant chemotherapy to trastuzumab, whereas those with lower levels benefited significantly [interaction test P=0.43 (HER2 expression), P=0.27 (HER2:HER2 dimers)]. These data suggest that more quantitative or functional measurements of HER2 status may facilitate the development of more personalized treatment strategies for patients with metastatic breast cancer.
Breast Cancer Research and Treatment | 2013
Allan Lipton; Laurie Goodman; Kim Leitzel; Jennifer W. Cook; Jeff Sperinde; Mojgan Haddad; Wolfgang J. Köstler; Weidong Huang; Jodi Weidler; Suhail M. Ali; Alicia Newton; Eva-Marie Fuchs; Agnes Paquet; Christian F. Singer; Reinhard Horvat; Xueguang Jin; Joyee Banerjee; Ali Mukherjee; Yuping Tan; Yining Shi; Ahmed Chenna; Jeffrey S. Larson; Yolanda Lie; Thomas Sherwood; Christos J. Petropoulos; Stephen Williams; John Winslow; Gordon Parry; Michael Bates
Trastuzumab is effective in the treatment of HER2/neu over-expressing breast cancer, but not all patients benefit from it. In vitro data suggest a role for HER3 in the initiation of signaling activity involving the AKT–mTOR pathway leading to trastuzumab insensitivity. We sought to investigate the potential of HER3 alone and in the context of p95HER2 (p95), a trastuzumab resistance marker, as biomarkers of trastuzumab escape. Using the VeraTag® assay platform, we developed a dual antibody proximity-based assay for the precise quantitation of HER3 total protein (H3T) from formalin-fixed paraffin-embedded (FFPE) breast tumors. We then measured H3T in 89 patients with metastatic breast cancer treated with trastuzumab-based therapy, and correlated the results with progression-free survival and overall survival using Kaplan–Meier and decision tree analyses that also included HER2 total (H2T) and p95 expression levels. Within the sub-population of patients that over-expressed HER2, high levels of HER3 and/or p95 protein expression were significantly associated with poor clinical outcomes on trastuzumab-based therapy. Based on quantitative H3T, p95, and H2T measurements, multiple subtypes of HER2-positive breast cancer were identified that differ in their outcome following trastuzumab therapy. These data suggest that HER3 and p95 are informative biomarkers of clinical outcomes on trastuzumab therapy, and that multiple subtypes of HER2-positive breast cancer may be defined by quantitative measurements of H3T, p95, and H2T.
American Journal of Clinical Pathology | 2010
Weidong Huang; Monica M. Reinholz; Jodi Weidler; Lie Yolanda; Agnes Paquet; Jeannette M. Whitcomb; Wilma L. Lingle; Robert B. Jenkins; Beiyun Chen; Jeffrey S. Larson; Yuping Tan; Thomas Sherwood; Michael Bates; Edith A. Perez
The accuracy and reliability of immunohistochemical analysis and in situ hybridization for the assessment of HER2 status remains a subject of debate. We developed a novel assay (HERmark Breast Cancer Assay, Monogram Biosciences, South San Francisco, CA) that provides precise quantification of total HER2 protein expression (H2T) and HER2 homodimers (H2D) in formalin-fixed, paraffin-embedded tissue specimens. H2T and H2D results of 237 breast cancers were compared with those of immunohistochemical studies and fluorescence in situ hybridization (FISH) centrally performed at the Mayo Clinic, Rochester, MN. H2T described a continuum across a wide dynamic range ( approximately 2.5 log). Excluding the equivocal cases, HERmark showed 98% concordance with immunohistochemical studies for positive and negative assay values. For the 94 immunohistochemically equivocal cases, 67% and 39% concordance values were observed between HERmark and FISH for positive and negative assay values, respectively. Polysomy 17 in the absence of HER2 gene amplification did not result in HER2 overexpression as evaluated quantitatively using the HERmark assay.
Pathology Research International | 2010
Jeffrey S. Larson; Laurie Goodman; Yuping Tan; Lisa DeFazio-Eli; Agnes Paquet; Jennifer W. Cook; Amber Rivera; Kristi Frankson; Jolly Bose; Lili Chen; Judy Cheung; Yining Shi; Sarah Irwin; Linda D. B. Kiss; Weidong Huang; Shannon Utter; Thomas Sherwood; Michael Bates; Jodi Weidler; Gordon Parry; John W. Winslow; Christos J. Petropoulos; Jeannette M. Whitcomb
We report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies. The measurement of H2T expression demonstrates a sensitivity that is approximately 7–10 times greater than conventional immunohistochemistry (IHC) (HercepTest). The HERmark assay is a quantitative assay that sensitively and reproducibly measures continuous H2T and H2D protein expression levels and therefore may have the potential to stratify patients more accurately with respect to response to HER2-targeted therapies than current methods which rely on semiquantitative protein measurements (IHC) or on indirect assessments of gene amplification (FISH).
BMC Cancer | 2010
Masakazu Toi; Jeff Sperinde; Weidong Huang; Shigehira Saji; John Winslow; Xueguang Jin; Yuping Tan; Shinji Ohno; Seigo Nakamura; Hiroji Iwata; Norikazu Masuda; Kenjiro Aogi; Satoshi Morita; Christos J. Petropoulos; Michael Bates
BackgroundWe have recently described the correlation between quantitative measures of HER2 expression or HER2 homodimers by the HERmark assay and objective response (RR), time-to progression (TTP), and overall survival (OS) in an expanded access cohort of trastuzumab-treated HER2-positive patients with metastatic breast cancer (MBC) who were stringently selected by fluorescence in situ hybridization (FISH). Multivariate analyses suggested a continuum of HER2 expression that correlated with outcome following trastuzumab. Here we investigate the relationship between HER2 expression or HER2 homodimers and OS in a clinic-based population of patients with MBC selected primarily by IHC.MethodsHERmark, a proximity-based assay designed to detect and quantitate protein expression and dimerization in formalin-fixed paraffin-embedded (FFPE) tissues, was used to measure HER2 expression and HER2 homodimers in FFPE samples from patients with MBC. Assay results were correlated with OS using univariate Kaplan-Meier, hazard function plots, and multivariate Cox regression analyses.ResultsInitial analyses revealed a parabolic relationship between continuous measures of HER2 expression and risk of death, suggesting that the assumption of linearity for the HER2 expression measurements may be inappropriate in subsequent multivariate analyses. Cox regression analyses using the categorized variable of HER2 expression level demonstrated that higher HER2 levels predicted better survival outcomes following trastuzumab treatment in the high HER2-expressing group.ConclusionsThese data suggest that the quantitative amount of HER2 expression measured by Hermark may be a new useful marker to identify a more relevant target population for trastuzumab treatment in patients with MBC.
Hiv Clinical Trials | 2016
Danielle Porter; Jonathan Toma; Yuping Tan; Owen Solberg; Suqin Cai; Rima Kulkarni; Kristen Andreatta; Yolanda Lie; Susan K. Chuck; Frank J. Palella; Michael D. Miller; Kirsten L. White
Objectives: Antiretroviral regimen switching may be considered for HIV-1-infected, virologically-suppressed patients to enable treatment simplification or improve tolerability, but should be guided by knowledge of pre-existing drug resistance. The current study examined the impact of pre-existing drug resistance mutations on virologic outcomes among virologically-suppressed patients switching to Rilpivirine (RPV)/emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF). Methods: SPIRIT was a phase 3b study evaluating the safety and efficacy of switching to RPV/FTC/TDF in virologically-suppressed HIV-1-infected patients. Pre-existing drug resistance at baseline was determined by proviral DNA genotyping for 51 RPV/FTC/TDF-treated patients with known mutations by historical RNA genotype and matched controls and compared with clinical outcome at Week 48. Results: Drug resistance mutations in protease or reverse transcriptase were detected in 62.7% of patients by historical RNA genotype and in 68.6% by proviral DNA genotyping at baseline. Proviral DNA sequencing detected 89% of occurrences of NRTI and NNRTI resistance-associated mutations reported by historical genotype. Mutations potentially affecting RPV activity, including E138A/G/K/Q, Y181C, and H221Y, were detected in isolates from 11 patients by one or both assays. None of the patients with single mutants had virologic failure through Week 48. One patient with pre-existing Y181Y/C and M184I by proviral DNA genotyping experienced virologic failure. Nineteen patients with K103N present by historical genotype were confirmed by proviral DNA sequencing and 18/19 remained virologically-suppressed. Discussion: Virologic success rates were high among virologically-suppressed patients with pre-existing NRTI and NNRTI resistance-associated mutations who switched to RPV/FTC/TDF in the SPIRIT study. While plasma RNA genotyping remains preferred, proviral DNA genotyping may provide additional value in virologically-suppressed patients for whom historical resistance data are unavailable.
Archive | 2001
Christine Loehrlein; Dan Pollart; Thomas A. Shaler; Kathy Stephens; Yuping Tan; Linda Wong; Joseph A. Monforte
Archive | 1997
Joseph A. Monforte; Thomas A. Shaler; Yuping Tan; Christopher H. Becker
Archive | 1998
Joseph A. Monforte; Thomas A. Shaler; Yuping Tan; Christopher H. Becker