Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuqing Huo is active.

Publication


Featured researches published by Yuqing Huo.


Endocrinology | 2010

Chronic Corticosterone Exposure Increases Expression and Decreases Deoxyribonucleic Acid Methylation of Fkbp5 in Mice

Richard S. Lee; Kellie L.K. Tamashiro; Xiaoju Yang; R.H. Purcell; Amelia Harvey; Virginia L. Willour; Yuqing Huo; Michael Rongione; Gary S. Wand; James B. Potash

There is evidence for hypercortisolemia playing a role in the generation of psychiatric symptoms and for epigenetic variation within hypothalamic-pituitary-adrenal (HPA) axis genes mediating behavioral changes. We tested the hypothesis that expression changes would be induced in Fkbp5 and other HPA axis genes by chronic exposure to corticosterone and that these changes would occur through the epigenetic mechanism of loss or gain of DNA methylation (DNAm). We administered corticosterone (CORT) to C57BL/6J mice via their drinking water for 4 wk and tested for behavioral and physiological changes and changes in gene expression levels using RNA extracted from hippocampus, hypothalamus, and blood for the following HPA genes: Fkbp5, Nr3c1, Hsp90, Crh, and Crhr1. The CORT mice exhibited anxiety-like behavior in the elevated plus maze test. Chronic exposure to CORT also caused a significant decrease in the hippocampal and blood mRNA levels of Nr3c1 and a decrease in Hsp90 in blood and caused an increase in Fkbp5 for all tissues. Differences were seen in Fkbp5 methylation in hippocampus and hypothalamus. To isolate a single-cell type, we followed up with an HT-22 mouse hippocampal neuronal cell line exposed to CORT. After 7 d, we observed a 2.4-fold increase in Fkbp5 expression and a decrease in DNAm. In the CORT-treated mice, we also observed changes in blood DNAm in Fkbp5. Our results suggest DNAm plays a role in mediating effects of glucocorticoid exposure on Fkbp5 function, with potential consequences for behavior.


Molecular Psychiatry | 2003

Genome-wide scan of bipolar disorder in 65 pedigrees: Supportive evidence for linkage at 8q24, 18q22, 4q32, 2p12, and 13q12

T-H Lan; Virginia L. Willour; Francis J. McMahon; Sylvia G. Simpson; A M Addington; Dean F. MacKinnon; James B. Potash; A T Mahoney; Jennifer L. Chellis; Yuqing Huo; T. Swift-Scanlan; Haiming Chen; R Koskela; O. Colin Stine; K R Jamison; Peter Holmans; Susan E. Folstein; Koustubh Ranade; Carl Friddle; D Botstein; Thomas G. Marr; Terri H. Beaty; Peter P. Zandi; J. Raymond DePaulo

The purpose of this study was to assess 65 pedigrees ascertained through a Bipolar I (BPI) proband for evidence of linkage, using nonparametric methods in a genome-wide scan and for possible parent of origin effect using several analytical methods. We identified 15 loci with nominally significant evidence for increased allele sharing among affected relative pairs. Eight of these regions, at 8q24, 18q22, 4q32, 13q12, 4q35, 10q26, 2p12, and 12q24, directly overlap with previously reported evidence of linkage to bipolar disorder. Five regions at 20p13, 2p22, 14q23, 9p13, and 1q41 are within several Mb of previously reported regions. We report our findings in rank order and the top five markers had an NPL>2.5. The peak finding in these regions were D8S256 at 8q24, NPL 3.13; D18S878 at 18q22, NPL 2.90; D4S1629 at 4q32, NPL 2.80; D2S99 at 2p12, NPL 2.54; and D13S1493 at 13q12, NPL 2.53. No locus produced statistically significant evidence for linkage at the genome-wide level. The parent of origin effect was studied and consistent with our previous findings, evidence for a locus on 18q22 was predominantly from families wherein the father or paternal lineage was affected. There was evidence consistent with paternal imprinting at the loci on 13q12 and 1q41.


Biological Psychiatry | 2003

Genome-wide scan and conditional analysis in bipolar disorder: Evidence for genomic interaction in the National Institute of Mental Health genetics initiative bipolar pedigrees

Danielle M. Dick; Virginia L. Willour; Dimitrios Avramopoulos; Dean F. MacKinnon; Sylvia G. Simpson; James B. Potash; Howard J. Edenberg; Elizabeth S. Bowman; Francis J. McMahon; Carrie Smiley; Jennifer L. Chellis; Yuqing Huo; Tyra L. Diggs; Eric T. Meyer; Marvin J. Miller; Amy Matteini; N. Leela Rau; J. Raymond DePaulo; Elliot S. Gershon; John P. Rice; Alison Goate; Sevilla D. Detera-Wadleigh; John I. Nurnberger; Theodore Reich; Peter P. Zandi; Tatiana Foroud

BACKGROUND In 1989 the National Institute of Mental Health began a collaborative effort to identify genes for bipolar disorder. The first 97 pedigrees showed evidence of linkage to chromosomes 1, 6, 7, 10, 16, and 22 (Nurnberger et al 1997). An additional 56 bipolar families have been genotyped, and the combined sample of 153 pedigrees studied. METHODS Three hierarchical affection status models were analyzed with 513 simple sequence repeat markers; 298 were common across all pedigrees. The primary analysis was a nonparametric genome-wide scan. We performed conditional analyses based on epistasis or heterogeneity for five regions. RESULTS One region, on 16p13, was significant at the genome-wide p <.05 level. Four additional chromosomal regions (20p12, 11p15, 6q24, and 10p12) showed nominally significant linkage findings (p </=.01). Conditional analysis assuming epistasis identified a significant increase in linkage at four regions. Families linked to 6q24 showed a significant increase in nonparametric logarithms of the odds (NPL) scores at 5q11 and 7q21. Epistasis also was observed between 20p12 and 13q21, and 16p13 and 9q21. CONCLUSIONS The findings are presented in rank order of nominal significance. Several of these regions have been previously implicated in independent studies of either bipolar disorder or schizophrenia. The strongest finding is at 16p13 at D16S748 with an NPL of 3.3, there is evidence of epistasis between this locus and 9q21. Application of conditional analyses is potentially useful in larger sample collections to identify susceptibility genes of modest influence that may not be identified in a genome-wide scan aimed to identify single gene effects.


European Journal of Human Genetics | 2001

NEDD4L on human chromosome 18q21 has multiple forms of transcripts and is a homologue of the mouse Nedd4-2 gene

Haiming Chen; Christopher A. Ross; Nulang Wang; Yuqing Huo; Dean F. MacKinnon; James B. Potash; Sylvia G. Simpson; Francis J. McMahon; J. Raymond DePaulo

The validation of full-length cDNA represents a crucial step in gene identification and subsequent functional analysis. In searching for candidate genes for bipolar disorder on chromosome 18q21, a novel gene homologous to NEDD4 (Neural precursor cells expressed developmentally down-regulated) was identified using exon trapping and cDNA cloning. This novel gene is termed NEDD4L (Human Gene Nomenclature Committee symbol). Typical NEDD4 orthologues that contain a C2 (Ca2+/lipid-binding) and a HECT (Homologous to the E6-AP Carboxyl Terminus) ubiquitin-protein ligase domain, and multiple WW domains have been shown to regulate the epithelial sodium channel (ENaC). In mice, Nedd4 has two distinct isoforms termed Nedd4-1 that belongs to the typical NEDD4 class, and Nedd4-2 that is homologous to Nedd4-1 but lacks the C2 domain. NEDD4L contains the WW and HECT domains seen in the NEDD4 gene family, but lacks the C2 domain in the N-terminus. BLAST database search showed that the deduced polypeptide of NEDD4L has 97 and 62% sequence identity to mouse Nedd4-2 and human NEDD4, respectively. Multiple forms of transcripts of NEDD4L have been isolated, which differ in transcription start and termination sites together with the presence or absence of an alternative spliced exon. Northern blot analysis showed a 3.4 kb mRNA species was specifically expressed in heart and skeletal muscle, while a 3.2 kb band and/or an additional 3.6 kb band is seen in other tissues tested. Striking homology of NEDD4L to mouse Nedd4-2 suggests it is the human homologue of mouse Nedd4-2. Its position in a region of linkage for autosomal dominant orthostatic hypotensive disorder and its potential role in regulating ENaC make NEDD4L a candidate gene for this disorder.


American Journal of Medical Genetics | 2003

Genome scan of a second wave of NIMH genetics initiative bipolar pedigrees: chromosomes 2, 11, 13, 14, and X

Peter P. Zandi; Virginia L. Willour; Yuqing Huo; Jennifer L. Chellis; James B. Potash; Dean F. MacKinnon; Sylvia G. Simpson; Francis J. McMahon; Elliot S. Gershon; Theodore Reich; Tatiana Foroud; John I. Nurnberger; J. Raymond DePaulo

As part of the on‐going NIMH Genetics Initiative on Bipolar Disorder, we have ascertained 153 multiplex bipolar pedigrees and genotyped them in two waves. We report here the genome scan results for chromosomes 2, 11, 13, 14, and X in the second wave of 56 families. A total of 354 individuals were genotyped and included in the current analyses, including 5 with schizoaffective/bipolar (SA/BP), 139 with bipolar I disorder (BPI), 41 with bipolar II disorder (BPII), and 43 with recurrent unipolar depression (RUP). Linkage analyses were carried out with multi‐point parametric and non‐parametric affected relative pair methods using three different definitions of the affected phenotype: (model 1) SA/BP and BPI; (model 2) SA/BP, BPI, and BPII; and (model 3) SA/BP, BPI, BPII, and RUP. The best findings were on 11p15.5 (NPL = 2.96, P = 0.002) and Xp11.3 (NPL = 2.19, P = 0.01). These findings did not reach conventional criteria for significance, but they were located near regions that have been identified in previous genetic studies of bipolar disorder. The relatively modest but consistent findings across studies may suggest that these loci harbor susceptibility genes of modest effect in a subset of families. Large samples such as that being collected by the NIMH Initiative will be necessary to examine the heterogeneity and identify these susceptibility genes.


Molecular Psychiatry | 2004

Linkage of bipolar affective disorder on chromosome 8q24: follow-up and parametric analysis

Dimitrios Avramopoulos; Virginia L. Willour; Peter P. Zandi; Yuqing Huo; Dean F. MacKinnon; James B. Potash; J. R. DePaulo

Our group first reported a linkage finding for bipolar (BP) disorder on chromosome 8q24 in a study of 50 multiplex pedigrees, with an HLOD score reaching 2.39. Recently, Cichon et al reported an LOD score of 3.62 in the same region using two-point parametric analysis. Subsequently, we published the results of a genome scan for linkage to BP disorder using a sample extended to 65 pedigrees in which chromosome 8q24 provided the best finding, an NPL score of 3.13, approaching the accepted score for suggestive linkage. We have now fine mapped this region of chromosome 8 in our 65 pedigrees by the addition of 19 microsatellite markers reaching a marker density of 0.8 cM and an information content of 0.84. After the addition of the new data, the original NPL score slightly increased to 3.25. Two-point parametric analysis using the model employed by Cichon et al obtained an LOD score of 3.32 for marker D8S256 at θ=0.14 exceeding the proposed threshold for genomewide significance. After adjusting the parameters in accordance with the ‘common disease–common variant’ hypothesis, multipoint parametric analysis resulted in an HLOD of 2.49 (α=0.78) between D8S529 and D8S256, and defined a 1-LOD interval corresponding to a 2.3 Mb region. No allelic association with the disease was observed for our set of microsatellite markers. Biologically, plausible candidate genes in this region include thyroglobulin, KCNQ3 coding for a voltage-gated potassium channel and the gene for brain adenyl-cyclase (ADCY8).


American Journal of Medical Genetics | 2003

Genome scan of the fifty‐six bipolar pedigrees from the NIMH genetics initiative replication sample: Chromosomes 4, 7, 9, 18, 19, 20, and 21

Virginia L. Willour; Peter P. Zandi; Yuqing Huo; Tyra L. Diggs; Jennifer L. Chellis; Dean F. MacKinnon; Sylvia G. Simpson; Francis J. McMahon; James B. Potash; Elliot S. Gershon; Theodore Reich; Tatiana Foroud; John I. Nurnberger; J. Raymond DePaulo

The NIMH genetics initiative on bipolar disorder was established to collect uniformly ascertained bipolar pedigrees for genetic studies. In 1997, the four participating sites published a genome scan on the initial set of 97 bipolar pedigrees. Fifty‐six additional bipolar pedigrees have now been ascertained and evaluated. This replication pedigree set contains 354 genotyped subjects, including 139 bipolar I (BPI) subjects, five schizoaffective bipolar type SA/BP subjects, 41 bipolar II (BPII) subjects, and 43 recurrent unipolar (RUP) depression subjects. Our site has recently genotyped the replication study bipolar pedigrees using 107 microsatellite markers from chromosomes 4, 7, 9, 18, 19, 20, and 21. We are now reporting parametric and nonparametric linkage results from this effort. Multipoint nonparametric linkage analysis produced three candidate regions with allele sharing LOD scores ≥ 1.0. The linkage signal on 4q35 peaked between markers D4S3335 and D4S2390 with an allele sharing LOD score of 2.49. This finding exceeds standard criteria for suggestive linkage. Two additional loci approach suggestive linkage levels: the 4q32 finding had its maximum near marker D4S1629 with an allele sharing LOD score of 2.16, and the 20p12 finding peaked at D20S162 with an allele sharing LOD score of 1.82. Multipoint parametric linkage analysis produced similar findings. When we combined the genotype data from the original and the replication pedigree sets, 20p12 yielded a nonparametric LOD score of 2.38, which exceeds standard criteria for suggestive linkage, and a corresponding parametric HLOD score of 2.98. The combined analysis did not provide further support for linkage to 4q32 and 4q35.


Epigenetics | 2011

Adaptation of the CHARM DNA methylation platform for the rat genome reveals novel brain region-specific differences.

Richard S. Lee; Kellie L.K. Tamashiro; Martin J. Aryee; Peter Murakami; Fayaz Seifuddin; Brian Herb; Yuqing Huo; Michael Rongione; Andrew P. Feinberg; Timothy H. Moran; James B. Potash

Comprehensive High-throughput Arrays for Relative Methylation (CHARM) was recently developed as an experimental platform and analytic approach to assess DNA methylation (DNAm) at a genome-wide level. Its initial implementation was for human and mouse. We adapted it for rat and sought to examine DNAm differences across tissues and brain regions in this model organism. We extracted DNA from liver, spleen, and three brain regions: cortex, hippocampus, and hypothalamus from adult Sprague Dawley rats. DNA was digested with McrBC, and the resulting methyl-depleted fraction was hybridized to the rat CHARM array along with a mock-treated fraction. Differentially methylated regions (DMRs) between tissue types were detected using normalized methylation log-ratios. In validating 24 of the most significant DMRs by bisulfite pyrosequencing, we detected large mean differences in DNAm, ranging from 33-59%, among the most significant DMRs in the across-tissue comparisons. The comparable figures for the hippocampus vs. hypothalamus DMRs were 14-40%, for the cortex vs. hippocampus DMRs, 12-29%, and for the cortex vs. hypothalamus DMRs, 5-35%, with a correlation of r2 = 0.92 between the methylation differences in 24 DMRs predicted by CHARM and those validated by bisulfite pyrosequencing. Our adaptation of the CHARM array for the rat genome yielded highly robust results that demonstrate the value of this method in detecting substantial DNAm differences between tissues and across different brain regions. This platform should prove valuable in future studies aimed at examining DNAm differences in particular brain regions of rats exposed to environmental stimuli with potential epigenetic consequences.


American Journal of Medical Genetics | 2007

SNP fine mapping of chromosome 8q24 in bipolar disorder.

Peter P. Zandi; Dimitrios Avramopoulos; Virginia L. Willour; Yuqing Huo; Kuangyi Miao; Dean F. MacKinnon; James B. Potash; J. Raymond DePaulo

We previously reported linkage to chromosome 8q24 in bipolar disorder (BP) with a LOD of 3.32. We fine mapped the locus with SNPs and tested for association with BP in families with evidence of linkage to the region. We genotyped 249 informative SNPs over 3.4 Mb in an initial sample of 155 nuclear families (352 affected offsprings), and followed up the best findings by genotyping six of the most significantly associated SNPs in a replication sample of 103 nuclear families (231 affected offsprings). We used FBAT and GIST for association tests. Two clusters of SNPs emerged with the strongest evidence of association. The first consisted of three SNPs, approximately 3 kb 5′ from the gene ST3GAL1. These SNPs were associated with BP in the initial sample by FBAT (best P = 0.001) and GIST (best P = 0.05) and associated in the replication sample by FBAT (best P = 0.04). The second cluster consisted of four SNPs (one of which was not genotyped in the replication sample), approximately 480 kb 5′ of ST3GAL1 in a relative gene desert. These SNPs were associated with BP in the initial sample by FBAT (best P = 0.007) and GIST (best P = 0.03), and marginally associated in the replication sample by FBAT (best P = 0.07) and GIST (P = 0.04). ST3GAL1 belongs to a family of glycosyltransferase proteins, several members of which are highly expressed in the brain and involved in neurogenesis. Several other interesting candidate genes are also located nearby. The congruence of findings across methods and samples suggests further investigation is warranted in these two targeted regions.


American Journal of Medical Genetics | 2012

Association study of serotonin pathway genes in attempted suicide

Jennifer Toolan Judy; Fayaz Seifuddin; Pamela B. Mahon; Yuqing Huo; Fernando S. Goes; Dubravka Jancic; Barbara Schweizer; Francis M. Mondimore; Dean F. MacKinnon; J. Raymond DePaulo; Elliot S. Gershon; Francis J. McMahon; David J. Cutler; Peter P. Zandi; James B. Potash; Virginia L. Willour

Epidemiological studies, such as family, twin, and adoption studies, demonstrate the presence of a heritable component to both attempted and completed suicide. Some of this heritability is accounted for by the presence of comorbid psychiatric disorders, but the evidence also indicates that a portion of this heritability is specific to suicidality. The serotonergic system has been studied extensively in this phenotype, but findings have been inconsistent, possibly due to the presence of multiple susceptibility variants and/or gene–gene interactions. In this study, we genotyped 174 tag and coding single nucleotide polymorphisms (SNPs) from 17 genes within the serotonin pathway on 516 subjects with a major mood disorder and a history of a suicide attempt (cases) and 515 healthy controls, with the goal of capturing the common genetic variation across each of these candidate genes. We tested the 174 markers in single‐SNP, haplotype, gene‐based, and epistasis analyses. While these association analyses identified multiple marginally significant SNPs, haplotypes, genes, and interactions, none of them survived correction for multiple testing. Additional studies, including assessment in larger sample sets and deep resequencing to identify rare causal variants, may be required to fully understand the role that the serotonin pathway plays in suicidal behavior.

Collaboration


Dive into the Yuqing Huo's collaboration.

Top Co-Authors

Avatar

James B. Potash

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter P. Zandi

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Francis J. McMahon

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitrios Avramopoulos

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge