Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuri Aono is active.

Publication


Featured researches published by Yuri Aono.


Neuroscience | 2005

The non-peptidic delta opioid receptor agonist TAN-67 enhances dopamine efflux in the nucleus accumbens of freely moving rats via a mechanism that involves both glutamate and free radicals.

Koichi Fusa; Ichiro Takahashi; Shu Watanabe; Yuri Aono; Hiroko Ikeda; Tadashi Saigusa; Hiroshi Nagase; Tsutomu Suzuki; Noriaki Koshikawa; Alexander R. Cools

The activation of the delta-opioid receptors in the nucleus accumbens is known to induce a large and rapid increase of accumbal dopamine efflux. (+/-)-TAN-67 (2-methyl-4a(alpha)-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12a(alpha)-octahydro-quinolino[2,3,3,-g]isoquinoline) is a centrally acting non-peptidic delta opioid receptor agent which has recently become available. Interestingly, the (+) enantiomer of TAN-67 induces hyperalgesia in contrast to the (-) enantiomer of TAN-67 that produces profound antinociceptive effects in mice; the latter effects are mediated through delta-1 receptor stimulation. Using the microdialysis technique, the ability of the enantiomers of TAN-67 to alter the release of accumbal dopamine in vivo was analyzed. Like the 25-min infusion of the selective delta-1 opioid receptor agonist (D-[Pen2,5]-enkephalin) DPDPE (50 nM) and the delta-2 opioid receptor agonist deltorphin II (50 nM), the 25-min infusion of both (-)-TAN-67 (25 and 50 nM) and (+)-TAN-67 (25 and 50 nM) into the nucleus accumbens produced a similar transient dose-dependent increase in the accumbal extracellular dopamine level. Naloxone (1 mg/kg i.p., given 25 min prior to the drugs), namely a treatment that is known to inhibit the increase of dopamine induced by DPDPE and deltorphin II, did not affect the transient increase in the accumbal dopamine level produced by infusion of the enantiomers of TAN-67. The DPDPE and deltorphin II-induced increase in accumbal dopamine level, but not that of (-)-TAN-67 and (+)-TAN-67, was eliminated by subsequently perfused tetrodotoxin (2 microM) into the nucleus accumbens. The increase in accumbal dopamine level produced by an infusion of (-)-TAN-67 and (+)-TAN-67 was not altered by a Ca2+-free Ringers solution. The (-)-TAN-67 and (+)-TAN-67-induced accumbal dopamine efflux was strongly prevented by reserpine (5 mg/kg i.p., given 24 h earlier) or alpha-methyl-para-tyrosine (250 mg/kg i.p., given 2 h earlier). The effects of the enantiomers of TAN-67 on the accumbal dopamine were nullified by combined treatment with reserpine and alpha-methyl-para-tyrosine. The (-)-TAN-induced dopamine efflux was significantly reduced by the N-methyl-D-aspartate (NMDA) receptor antagonists ifenprodil (20 mg/kg i.p., 20 min before) and MK-801 (0.5 mg/kg i.p., 20 min before), respectively. The effects of (-)-TAN-67 on the dopamine efflux were also inhibited by the free radical scavenger N-2-mercaptopropionyl glycine (100 mg/kg i.p., 20 min before). These results show that both enantiomers of TAN-67 enhance the release of reserpine sensitive, vesicular dopamine and alpha-methyl-p-tyrosine sensitive, cytosolic dopamine from dopaminergic nerve terminals in the nucleus accumbens in a way that is independent of neural activity; activation of delta opioid receptors plays no role in these events. All together, the results suggest that (-)-TAN-67 can generate a burst of free radicals that in turn trigger a release of glutamate that ultimately via activation of NMDA receptors enhances the release of dopamine from dopaminergic nerve terminals in the nucleus accumbens.


Neuropsychopharmacology | 2006

Endomorphin-2 and Endomorphin-1 Promote the Extracellular Amount of Accumbal Dopamine via Nonopioid and Mu-Opioid Receptors, Respectively

Hiroko Okutsu; Shu Watanabe; Ichiro Takahashi; Yuri Aono; Tadashi Saigusa; Noriaki Koshikawa; Alexander R. Cools

Activation of mu-opioid receptors in the nucleus accumbens (NAc) is known to increase accumbal dopamine efflux in rats. Endomorphin-2 (Tyr-Pro-Phe-Phe-NH2; EM-2) and endomorphin-1 (Tyr-Pro-Trp-Phe-NH2; EM-1) are suggested to be the endogenous ligands for the mu-opioid receptor. As the ability of EM-2 and EM-1 to alter the accumbal extracellular dopamine level has not yet been studied in freely moving rats, the present study was performed, using a microdialysis technique that allows on-line monitoring of the extracellular dopamine with a temporal resolution of 5 min. A 25 min infusion of either EM-2 or EM-1 into the NAc (5, 25, and 50 nmol) produced a dose-dependent increase of the accumbal dopamine level. The EM-2 (50 nmol)- and EM-1 (25 and 50 nmol)-induced dopamine efflux were abolished by intra-accumbal perfusion of tetrodotoxin (2 μM). Intra-accumbal perfusion of the mu-opioid receptor antagonist CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH2; 3 nmol) failed to affect the EM-2 (50 nmol)-induced dopamine release, whereas it significantly inhibited the EM-1 (25 and 50 nmol)-induced dopamine release. The EM-1 (50 nmol)-induced accumbal dopamine efflux was significantly reduced by the systemic administration of the putative mu1-opioid receptor antagonist naloxonazine (15 mg/kg, intraperitoneally (i.p.), given 24 h before starting the perfusion). Systemic administration of the aspecific opioid receptor antagonist naloxone (1 mg/kg, i.p., given 10 or 20 min before starting the perfusion) also failed to affect the EM-2 (50 nmol)-induced dopamine efflux, whereas it significantly inhibited the EM-1 (25 and 50 nmol)-induced dopamine efflux. The present study shows that the intra-accumbal infusion of EM-2 and EM-1 increases accumbal dopamine efflux by mechanisms that fully differ. It is concluded that the effects of EM-2 are not mediated via opioid receptors in contrast to the effects of EM-1 that are mediated via mu1-opioid receptors in the NAc.


European Journal of Pharmacology | 2012

The α1-, but not α2-, adrenoceptor in the nucleus accumbens plays an inhibitory role upon the accumbal noradrenaline and dopamine efflux of freely moving rats

Tadashi Saigusa; Yuri Aono; Takuya Uchida; Koji Takada; Michel M. M. Verheij; Noriaki Koshikawa; Alexander R. Cools

In vivo microdialysis was used to analyse the role of the α(1)- and α(2)-adrenoceptor subtypes in the regulation of noradrenaline and dopamine efflux in the nucleus accumbens of freely moving rats. Intra-accumbal infusion of α(1)-adrenoceptor agonist methoxamine (24pmol) failed to alter the noradrenaline efflux, but decreased the dopamine efflux. The intra-accumbal infusion of α(1)-adrenoceptor antagonist prazosin (6, 600 and 6000pmol) produced a dose-related increase and decrease of the noradrenaline and dopamine efflux, respectively. An ineffective dose of prazosin (6pmol) counteracted the methoxamine (24pmol)-induced decrease of dopamine efflux. The prazosin (6000pmol)-induced increase of noradrenaline efflux, but not the decrease of dopamine efflux, was suppressed by the co-administration of an ineffective dose of methoxamine (0.024pmol). Neither the α(2)-adrenoceptor agonist clonidine (300pmol) and UK 14,304 (300pmol) nor the α(2)-adrenoceptor antagonist RX 821002 (0.6, 3, 600 and 6000pmol) significantly affected the accumbal noradrenaline and dopamine efflux. The doses mentioned are the total amount of drug over the 60-min infusion period. The present results show that (1) accumbal α(1)-adrenoceptors which are presynaptically located on noradrenergic nerve terminals inhibit the accumbal noradrenaline efflux, increasing thereby the accumbal dopamine efflux, (2) accumbal α(1)-adrenoceptors which are postsynaptically located on dopaminergic nerve terminals inhibit the accumbal dopamine efflux, and (3) accumbal α(2)-adrenoceptors play no major role in the regulation of accumbal efflux of noradrenaline and dopamine.


Journal of Neural Transmission | 2007

Role of alpha adrenoceptors in the nucleus accumbens in the control of accumbal noradrenaline efflux: a microdialysis study with freely moving rats

Yuri Aono; Tadashi Saigusa; Shunsuke Watanabe; Tomoyo Iwakami; Naoko Mizoguchi; Hiroko Ikeda; Kumiko Ishige; Katsunori Tomiyama; Yoshiyuki Oi; Koichiro Ueda; W.-D. Rausch; John L. Waddington; Yoshihisa Ito; Noriaki Koshikawa; Alexander R. Cools

SummaryMicrodialysis technique was used to study the effects of the locally applied alpha adrenoceptor agonist phenylephrine and antagonist phentolamine on the basal noradrenaline efflux as well as on the noradrenaline uptake inhibitor desipramine-elicited noradrenaline efflux in the nucleus accumbens (NAc) of freely moving rats.Tetrodotoxin reduced basal noradrenaline efflux by 72%, whereas desipramine increased it by 204%. Phenylephrine reduced the basal noradrenaline efflux by 32% and phentolamine blocked this effect. Phentolamine elevated the basal noradrenaline efflux by 150% and phenylephrine counteracted this effect. The desipramine-elicited noradrenaline efflux was not affected by phenylephrine, but enhanced by phentolamine. Desipramine counteracted the effects of phenylephrine and potentiated those of phentolamine.These results indicate that the accumbal noradrenaline efflux is under inhibitory control of alpha adrenoceptors that are suggested to be presynaptically located on adrenergic nerve terminals in the NAc. Furthermore, this study suggests that the conformational state of alpha adrenoceptors varies across the available amount of noradrenaline. The clinical impact of these data is discussed.


European Journal of Pharmacology | 2008

The reboxetine-induced increase of accumbal dopamine efflux is inhibited by l-propranolol: A microdialysis study with freely moving rats

Naoko Mizoguchi; Tadashi Saigusa; Yuri Aono; Reiko Sekino; Koji Takada; Yoshiyuki Oi; Koichiro Ueda; Noriaki Koshikawa; Alexander R. Cools

In vivo microdialysis was used to study the effects of the locally applied selective noradrenaline uptake inhibitor reboxetine on the baseline noradrenaline and dopamine efflux in the nucleus accumbens of freely moving rats. The effects of intra-accumbal infusion of the beta-adrenoceptor antagonist l-propranolol on the reboxetine-elicited noradrenaline and dopamine efflux in the nucleus accumbens were also analysed. The intra-accumbal infusion of reboxetine (1.2 and 12 pmol) significantly increased both the accumbal noradrenaline efflux and the accumbal dopamine efflux. The intra-accumbal infusion of the chosen doses of l-propranolol (300 and 1200 pmol) did not alter the accumbal noradrenaline and dopamine efflux. The l-propranolol treatment did not affect the reboxetine-elicited accumbal noradrenaline efflux, but it significantly inhibited the reboxetine-elicited increase of accumbal dopamine efflux. The doses mentioned are the total amount of drug over the infusion period that varied across the drugs (60 or 120 min). The present study shows that the intra-accumbal infusion of selective noradrenaline uptake inhibitor reboxetine increases noradrenaline as well as dopamine efflux in the nucleus accumbens of freely moving rats. This study also indicates that inhibition of accumbal beta-adrenoceptors prevented the increase of the reboxetine-induced accumbal dopamine efflux. It is suggested that the reboxetine-induced increase of the endogenous accumbal noradrenaline activates among others accumbal beta-adrenoceptors that, in turn, stimulate the accumbal release of dopamine.


Neuroscience | 2005

Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of dexamphetamine.

Shu Watanabe; Yuri Aono; Koichi Fusa; Koji Takada; Tadashi Saigusa; Noriaki Koshikawa; Alexander R. Cools

Systemic administration of high doses of dexamphetamine induces a dopamine efflux that has its intracellular origin in both the vesicular, reserpine-sensitive dopamine pool and the cytosolic, alpha-methyl-para-tyrosine-sensitive, newly synthesized dopamine pool. It remains unknown whether locally administered dexamphetamine produces similar effects. Using a brain microdialysis technique that is combined with a microinjection needle, the contribution of the vesicular and cytosolic pools to the dopamine efflux induced by striatal injection of dexamphetamine was analyzed in rats. The transient striatal dopamine efflux induced by intrastriatal injection of dexamphetamine (1.0 microg/0.5 microl) was significantly reduced by systemic administration of reserpine (5mg/kg i.p., given 24 h earlier) or alpha-methyl-para-tyrosine (250 mg/kg i.p., given 2 h earlier). The effects of dexamphetamine on the striatal dopamine were nearly nullified by combined treatment with reserpine and alpha-methyl-para-tyrosine. The sum of the amounts of extracellular dopamine that was sensitive to either reserpine or alpha-methyl-para-tyrosine, was far greater than 100%, namely 146.1% of the basal dopamine level and 144.0% of the dexamphetamine-induced dopamine level. The present study indicates that both the vesicular dopamine pool and the cytosolic dopamine pool contribute to the transient increase of striatal dopamine efflux induced by intrastriatal injection of dexamphetamine. This study also suggests that striatally applied dexamphetamine can promote the redistribution of rat striatal dopamine from vesicles to the cytosol in vivo.


European Journal of Pharmacology | 2013

Synergistic, but not separate, stimulation of accumbal β1- and β2-adrenoceptors alters the accumbal dopamine efflux in freely moving rats.

Yuri Aono; Tadashi Saigusa; Hiroko Taguchi; Takuya Uchida; Koji Takada; Noriaki Koshikawa; Alexander R. Cools

The effects of intra-accumbal infusion of selective agonists for the β-adrenoceptor subtypes on the noradrenaline and dopamine efflux in the nucleus accumbens of freely moving rats were investigated, using in vivo microdialysis. Neither β1-(dobutamine: 0.06 and 0.12 pmol) nor β2-adrenoceptor agonist (salbutamol: 0.36 and 3.6 pmol) altered the basal noradrenaline and dopamine efflux in the nucleus accumbens. Co-administration of 0.06 pmol of dobutamine with salbutamol (3.6 pmol) did not affect the noradrenaline levels, but it increased the dopamine efflux to approximately 120%. Co-administration of 0.12 pmol of dobutamine with salbutamol (0.36 or 3.6pmol) also increased DA efflux to approximately 120% without affecting noradrenaline levels. The non-selective β-adrenoceptor antagonist l-propranolol (1200 pmol) that did not alter the basal noradrenaline and dopamine levels, suppressed the dopamine efflux, induced by co-administration of dobutamine (0.12 pmol) and salbutamol (3.6 pmol). The doses mentioned are the total amount of drug over the 60-min infusion period. The present results support our previously reported conclusion that stimulation of accumbal β-adrenoceptors which are suggested to be postsynaptically located on accumbal dopaminergic terminals, can enhance the dopamine efflux in the nucleus accumbens. The present study also provides in vivo neurochemical evidence that concomitant, but not separate, activation of accumbal β1- and β2-adrenoceptors synergistically increases the accumbal dopamine efflux.


European Journal of Pharmacology | 2009

Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

Tadashi Saigusa; Yuri Aono; Reiko Sekino; Takuya Uchida; Koji Takada; Yoshiyuki Oi; Noriaki Koshikawa; Alexander R. Cools

Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular dopamine pool and the alpha-methyl-para-tyrosine-sensitive cytosolic dopamine pool. Given the similarities between dexamphetamine and SKF38393, we hypothesized that both types of pool also contribute to the striatally applied SKF38393-induced dopamine efflux. Using in vivo microdialysis technique, we analysed the contribution of these pools to the SKF38393-induced striatal dopamine efflux in freely moving rats. The increase of dopamine efflux induced by 1.5 microg SKF38393 was largely prevented by either reserpine (5mg/kg i.p., given 24h earlier) or alpha-methyl-para-tyrosine (250 mg/kg i.p., given 2h earlier), showing that both the vesicular dopamine pool and the cytosolic dopamine pool contribute to the SKF38393-induced increase in striatal dopamine efflux. The sum of the amounts of dopamine that was sensitive to either reserpine or alpha-methyl-para-tyrosine, was greater than 100%, namely 137.6% of the basal dopamine level and 143.9% of the SKF38393-induced dopamine level, suggesting that striatally applied SKF38393 promotes the redistribution of dopamine from vesicles to the cytosol, and vice versa. The finding that the combined treatment of reserpine and alpha-methyl-para-tyrosine only inhibited the SKF38393-induced striatal dopamine efflux till 86.0% of the control, is ascribed to the notion that SKF38393 can also inhibit the re-uptake of dopamine. The latter conclusion has far-reaching consequences for studies in which the effects of SKF38393 are simply ascribed to its dopamine D1 receptor stimulation capacity.


Behavioural Pharmacology | 2015

Simultaneous activation of the α1A-, α1B- and α1D-adrenoceptor subtypes in the nucleus accumbens reduces accumbal dopamine efflux in freely moving rats.

Yuri Aono; Hiroko Taguchi; Tadashi Saigusa; Takuya Uchida; Koji Takada; Hatakazu Takiguchi; Tetsuo Shirakawa; Noriyoshi Shimizu; Noriaki Koshikawa; Alexander R. Cools

Intra-accumbal infusion of the α1-adrenergic agonist methoxamine, which has comparable affinity for α1A-, α1B- and α1D-adrenoceptor subtypes, fails to alter noradrenaline efflux but reduces dopamine efflux in the nucleus accumbens of rats. In-vivo microdialysis experiments were carried out to analyse the putative contribution of α1A-, α1B- and α1D-adrenoceptor subtypes to the methoxamine-induced decrease in accumbal dopamine efflux in freely moving rats. The drugs used were dissolved in the infusion medium and administered locally through a dialysis membrane. Intra-accumbal infusions of the α1A-adrenoceptor antagonist 5-methylurapidil (6 pmol), the α1B-adrenoceptor antagonist cyclazosin (0.6 and 6 pmol) and the α1D-adrenoceptor antagonist BMY 7378 (0.6 pmol) did not alter accumbal efflux of noradrenaline or dopamine: pretreatment with each of these α1-adrenoceptor subtype-selective antagonists counteracted the methoxamine (24 pmol)-induced decrease in accumbal dopamine efflux. Doses indicated are the total amount of drug administered over a 60-min infusion period. These results clearly suggest that the α1A-, α1B- and α1D-adrenoceptor subtypes in the nucleus accumbens mediate the α1-adrenergic agonist methoxamine-induced decrease in accumbal dopamine efflux. The present study also provides in-vivo neurochemical evidence indicating that concomitant, but not separate, activation of the α1A-, α1B- and α1D-adrenoceptors in the nucleus accumbens is required for α1-adrenergic inhibition of accumbal dopaminergic activity.


International Journal of Oral Science | 2015

Intragingival injection of Porphyromonas gingivalis-derived lipopolysaccharide induces a transient increase in gingival tumour necrosis factor-α, but not interleukin-6, in anaesthetised rats.

Hiroko Taguchi; Yuri Aono; Takayuki Kawato; Masatake Asano; Noriyoshi Shimizu; Tadashi Saigusa

This study used in vivo microdialysis to examine the effects of intragingival application of lipopolysaccharide (LPS) derived from Porphyromonas gingivalis (Pg-LPS) on gingival tumour necrosis factor (TNF)-α and interleukin (IL)-6 levels in rats. A microdialysis probe with an injection needle attached to the surface of the dialysis membrane was implanted into the gingiva of the upper incisor. For comparison, the effects of LPS derived from Escherichia coli (Ec-LPS) on IL-6 and TNF-α levels were also analysed. Pg-LPS (1 μg/1 μL) or Ec-LPS (1 or 6 μg/1 μL) was applied by microsyringe, with gingival dialysates collected every hour. Enzyme-linked immunosorbent assay (ELISA) revealed that gingival dialysates contained approximately 389 pg·mL−1 of IL-6 basally; basal TNF-α levels were lower than the detection limit of the ELISA. Pg-LPS failed to alter IL-6 levels but markedly increased TNF-α levels, which remained elevated for 2 h after treatment. Neither IL-6 nor TNF-α were affected by Ec-LPS. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that the gingiva expresses Toll-like receptor (TLR) 2 and TLR4 mRNA. Immunohistochemical examination showed that TLR2 and TLR4 are expressed by gingival epithelial cells. The present study provides in vivo evidence that locally applied Pg-LPS, but not Ec-LPS, into the gingiva transiently increases gingival TNF-α without affecting IL-6. The present results suggest that TLR2 but not TLR4 expressed on gingival epithelial cells may mediate the Pg-LPS-induced increase in gingival TNF-α in rats.International Journal of Oral Science advance online publication, 5 June 2015; doi:10.1038/ijos.2015.9

Collaboration


Dive into the Yuri Aono's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander R. Cools

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Waddington

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge