Yuri N. Antonenko
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuri N. Antonenko.
Biochimica et Biophysica Acta | 2009
Vladimir P. Skulachev; Vladimir N. Anisimov; Yuri N. Antonenko; L. E. Bakeeva; Boris V. Chernyak; Valery P. Erichev; Oleg F. Filenko; Natalya I. Kalinina; Kapel'ko Vi; N. G. Kolosova; Boris P. Kopnin; Galina A. Korshunova; Mikhail R. Lichinitser; Lidia A. Obukhova; Elena G. Pasyukova; O. I. Pisarenko; Vitaly Roginsky; Ruuge Ek; Ivan I. Senin; Inna I. Severina; Maxim V. Skulachev; Irina M. Spivak; Vadim N. Tashlitsky; Tkachuk Va; Mikhail Yu. Vyssokikh; L. S. Yaguzhinsky; Dmitry B. Zorov
Antioxidants specifically addressed to mitochondria have been studied to determine if they can decelerate senescence of organisms. For this purpose, a project has been established with participation of several research groups from Russia and some other countries. This paper summarizes the first results of the project. A new type of compounds (SkQs) comprising plastoquinone (an antioxidant moiety), a penetrating cation, and a decane or pentane linker has been synthesized. Using planar bilayer phospholipid membrane (BLM), we selected SkQ derivatives with the highest permeability, namely plastoquinonyl-decyl-triphenylphosphonium (SkQ1), plastoquinonyl-decyl-rhodamine 19 (SkQR1), and methylplastoquinonyldecyltriphenylphosphonium (SkQ3). Anti- and prooxidant properties of these substances and also of ubiquinonyl-decyl-triphenylphosphonium (MitoQ) were tested in aqueous solution, detergent micelles, liposomes, BLM, isolated mitochondria, and cell cultures. In mitochondria, micromolar cationic quinone derivatives were found to be prooxidants, but at lower (sub-micromolar) concentrations they displayed antioxidant activity that decreases in the series SkQ1=SkQR1>SkQ3>MitoQ. SkQ1 was reduced by mitochondrial respiratory chain, i.e. it is a rechargeable antioxidant. Nanomolar SkQ1 specifically prevented oxidation of mitochondrial cardiolipin. In cell cultures, SkQR1, a fluorescent SkQ derivative, stained only one type of organelles, namely mitochondria. Extremely low concentrations of SkQ1 or SkQR1 arrested H(2)O(2)-induced apoptosis in human fibroblasts and HeLa cells. Higher concentrations of SkQ are required to block necrosis initiated by reactive oxygen species (ROS). In the fungus Podospora anserina, the crustacean Ceriodaphnia affinis, Drosophila, and mice, SkQ1 prolonged lifespan, being especially effective at early and middle stages of aging. In mammals, the effect of SkQs on aging was accompanied by inhibition of development of such age-related diseases and traits as cataract, retinopathy, glaucoma, balding, canities, osteoporosis, involution of the thymus, hypothermia, torpor, peroxidation of lipids and proteins, etc. SkQ1 manifested a strong therapeutic action on some already pronounced retinopathies, in particular, congenital retinal dysplasia. With drops containing 250 nM SkQ1, vision was restored to 67 of 89 animals (dogs, cats, and horses) that became blind because of a retinopathy. Instillation of SkQ1-containing drops prevented the loss of sight in rabbits with experimental uveitis and restored vision to animals that had already become blind. A favorable effect of the same drops was also achieved in experimental glaucoma in rabbits. Moreover, the SkQ1 pretreatment of rats significantly decreased the H(2)O(2) or ischemia-induced arrhythmia of the isolated heart. SkQs strongly reduced the damaged area in myocardial infarction or stroke and prevented the death of animals from kidney ischemia. In p53(-/-) mice, 5 nmol/kgxday SkQ1 decreased the ROS level in the spleen and inhibited appearance of lymphomas to the same degree as million-fold higher concentration of conventional antioxidant NAC. Thus, SkQs look promising as potential tools for treatment of senescence and age-related diseases.
Biochemistry | 2008
Yuri N. Antonenko; Armine V. Avetisyan; L. E. Bakeeva; Boris V. Chernyak; V. A. Chertkov; Domnina Lv; O. Yu. Ivanova; Denis S. Izyumov; L. S. Khailova; Sergey S. Klishin; Galina A. Korshunova; Konstantin G. Lyamzaev; Maria S. Muntyan; O. K. Nepryakhina; Alina A. Pashkovskaya; O. Yu. Pletjushkina; Antonina V. Pustovidko; Vitaly Roginsky; Tatyana I. Rokitskaya; Ruuge Ek; V. B. Saprunova; Inna I. Severina; Ruben A. Simonyan; I. V. Skulachev; Maxim V. Skulachev; N. V. Sumbatyan; I. V. Sviryaeva; Vadim N. Tashlitsky; J. M. Vassiliev; M. Yu. Vyssokikh
Synthesis of cationic plastoquinone derivatives (SkQs) containing positively charged phosphonium or rhodamine moieties connected to plastoquinone by decane or pentane linkers is described. It is shown that SkQs (i) easily penetrate through planar, mitochondrial, and outer cell membranes, (ii) at low (nanomolar) concentrations, posses strong antioxidant activity in aqueous solution, BLM, lipid micelles, liposomes, isolated mitochondria, and cells, (iii) at higher (micromolar) concentrations, show pronounced prooxidant activity, the “window” between anti- and prooxidant concentrations being very much larger than for MitoQ, a cationic ubiquinone derivative showing very much lower antioxidant activity and higher prooxidant activity, (iv) are reduced by the respiratory chain to SkQH2, the rate of oxidation of SkQH2 being lower than the rate of SkQ reduction, and (v) prevent oxidation of mitochondrial cardiolipin by OH·. In HeLa cells and human fibroblasts, SkQs operate as powerful inhibitors of the ROS-induced apoptosis and necrosis. For the two most active SkQs, namely SkQ1 and SkQR1, C1/2 values for inhibition of the H2O2-induced apoptosis in fibroblasts appear to be as low as 1·10−11 and 8·10−13 M, respectively. SkQR1, a fluorescent representative of the SkQ family, specifically stains a single type of organelles in the living cell, i.e. energized mitochondria. Such specificity is explained by the fact that it is the mitochondrial matrix that is the only negatively-charged compartment inside the cell. Assuming that the Δψ values on the outer cell and inner mitochondrial membranes are about 60 and 180 mV, respectively, and taking into account distribution coefficient of SkQ1 between lipid and water (about 13,000: 1), the SkQ1 concentration in the inner leaflet of the inner mitochondrial membrane should be 1.3·108 times higher than in the extracellular space. This explains the very high efficiency of such compounds in experiments on cell cultures. It is concluded that SkQs are rechargeable, mitochondria-targeted antioxidants of very high efficiency and specificity. Therefore, they might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo.
Nature Structural & Molecular Biology | 2003
Genji Kurisu; Stanislav D. Zakharov; Mariya V. Zhalnina; Sufiya Bano; Veronika Y. Eroukova; Tatiana I. Rokitskaya; Yuri N. Antonenko; Michael C. Wiener; William A. Cramer
Cellular import of colicin E3 is initiated by the Escherichia coli outer membrane cobalamin transporter, BtuB. The 135-residue 100-Å coiled-coil receptor-binding domain (R135) of colicin E3 forms a 1:1 complex with BtuB whose structure at a resolution of 2.75 Å is reported. Binding of R135 to the BtuB extracellular surface (ΔG° = −12 kcal mol−1) is mediated by 27 residues of R135 near the coiled-coil apex. Formation of the R135–BtuB complex results in unfolding of R135 N- and C-terminal ends, inferred to be important for unfolding of the colicin T-domain. Small conformational changes occur in the BtuB cork and barrel domains but are insufficient to form a translocation channel. The absence of a channel and the peripheral binding of R135 imply that BtuB serves to bind the colicin, and that the coiled-coil delivers the colicin to a neighboring outer membrane protein for translocation, thus forming a colicin translocon. The translocator was concluded to be OmpF from the occlusion of OmpF channels by colicin E3.
Biophysical Journal | 1998
Peter Pohl; Sapar M. Saparov; Yuri N. Antonenko
By monitoring the concentration distribution of several solutes that are diffusing at the same time under given mixing conditions, it was established that the unstirred layer (USL) has no clearly defined boundary. For the cases of solute permeation and water movement across planar bilayer lipid membranes, respectively, experiments carried out with double-barreled microelectrodes have shown that the thickness of the USL depends on which species is diffusing. Small molecules with a larger diffusion coefficient encounter an apparently thicker USL than larger molecules with a smaller diffusion coefficient. The ratio of the USL thicknesses of two different substances is equal to the third root of the ratio of the respective diffusion coefficients. This experimental finding is in good agreement with theoretical predictions from the theory of physicochemical hydrodynamics.
Biophysical Journal | 1997
Tatyana I. Rokitskaya; Yuri N. Antonenko; Elena A. Kotova
A technique of measuring of the light-induced transients of the gramicidin-mediated electric current across a membrane in the presence of a photosensitizer has been applied for the study of the effect of agents modifying the dipole potential of a bilayer lipid membrane (phloretin, 6-ketocholestanol, and RH421) on the processes of the gramicidin channel dissociation and formation. It is shown that phloretin, known to lower the dipole potential, decelerates the flash-induced decrease in the current, whereas 6-ketocholestanol and RH421, known to raise the dipole potential, accelerate the current decrease. It is revealed that the addition of phloretin leads to a decrease in the dissociation rate constant, whereas addition of either 6-ketocholestanol or RH421 causes an increase in this constant. Single-channel data show that phloretin brings about an increase in the lifetime of the gramicidin channels, whereas RH421 produces a more complicated effect. It is conclude that the dipole potential affects the process of channel dissociation, presumably via the influence on the movement of the dipoles of gramicidin molecules through the layer of the dipole potential drop near the membrane-water interface.
Journal of Bioenergetics and Biomembranes | 1992
Kathleen W. Kinnally; Yuri N. Antonenko; Dmitry B. Zorov
Three classes of inner mitochondrial membrane (IMM) channel activities have been defined by direct measurement of conductance levels in membranes with patch clamp techniques in 150 mM K Cl. The “107 pS activity” is slightly anion selective and voltage dependent (open with matrix positive potentials). “Multiple conductance channel” (MCC) activity includes several levels from about 40 to over 1000 pS and can be activated by voltage or Ca2+. MCC may be responsible for the Ca2+-induced permeability transition observed with mitochondrial suspensions. A “low conductance channel” (LCC) is activated by alkaline pH and inhibited by Mg2+. LCC has a unit conductance of about 15 pS and may correspond to the inner membrane anion channel, IMAC, which was proposed from results obtained from suspension studies. All of the IMM channels defined thus far appear to be highly regulated and have a low open probability under physiological conditions. A summary of what is known about IMM channel regulation and pharmacology is presented and possible physiological roles of these channels are discussed.
Biophysical Journal | 2003
Steffen Serowy; Sapar M. Saparov; Yuri N. Antonenko; Wladas Kozlovsky; Volker Hagen; Peter Pohl
For H(+) transport between protein pumps, lateral diffusion along membrane surfaces represents the most efficient pathway. Along lipid bilayers, we measured a diffusion coefficient of 5.8 x 10(-5) cm(2) s(-1). It is too large to be accounted for by vehicle diffusion, considering proton transport by acid carriers. Such a speed of migration is accomplished only by the Grotthuss mechanism involving the chemical exchange of hydrogen nuclei between hydrogen-bonded water molecules on the membrane surface, and the subsequent reorganization of the hydrogen-bonded network. Reconstitution of H(+)-binding sites on the membrane surface decreased the velocity of H(+) diffusion. In the absence of immobile buffers, structural (Grotthuss) diffusion occurred over a distance of 100 micro m as shown by microelectrode aided measurements of the spatial proton distribution in the immediate membrane vicinity and spatially resolved fluorescence measurements of interfacial pH. The efficiency of the anomalously fast lateral diffusion decreased gradually with an increase in mobile buffer concentration suggesting that structural diffusion is physiologically important for distances of approximately 10 nm.
FEBS Letters | 2004
Alexander A. Sobko; Elena A. Kotova; Yuri N. Antonenko; Stanislav D. Zakharov; William A. Cramer
The channel activity of colicin E1 was studied in planar lipid bilayers and liposomes. Colicin E1 pore‐forming activity was found to depend on the curvature of the lipid bilayer, as judged by the effect on channel activity of curvature‐modulating agents. In particular, the colicin‐induced trans‐membrane current was augmented by lysophosphatidylcholine and reduced by oleic acid, agents promoting positive and negative membrane curvature, respectively. The data obtained imply direct involvement of lipids in the formation of colicin E1‐induced pore walls. It is inferred that the toroidal pore model previously validated for small antimicrobial peptides is applicable to colicin E1, a large protein that contains ten α‐helices in its pore‐forming domain.
Biochemical and Biophysical Research Communications | 1991
Kathleen W. Kinnally; Zorov Dmitry; Yuri N. Antonenko; Sean Perini
Protocols were defined that enable patch-clamp studies of the approximately 107 pS voltage dependent channel and a class of activity we refer to as MCC (multiconductance channel) which is characterized by multiple levels and transitions as high as 1 to 1.5 nS. If free calcium was kept at 10(-7) M or lower during mitochondrial isolation, no activity was observed at low voltage (+/- 60 mV). If free calcium levels were higher, MCC activity was observed in about 96% of the patches. The observation of approximately 107 pS channel was enhanced from 2% to 68% of patches by washing isolated mitoplasts (mitochondria stripped of outer membrane) with EGTA. Increasing matrix calcium from 10(-9) to 10(-5) M decreased the probability of opening for the MCC and approximately 107 pS activities.
Langmuir | 2010
Alina A. Pashkovskaya; Elena A. Kotova; Yunus Zorlu; Fabienne Dumoulin; Vefa Ahsen; I. I. Agapov; Yuri N. Antonenko
Photosensitized damage to liposome membranes was studied by using different dye-leakage assays based on fluorescence dequenching of a series of dyes upon their release from liposomes. Irradiation of liposomes with red light in the presence of a photosensitizer, trisulfonated aluminum phthalocyanine (AlPcS(3)), resulted in the pronounced leakage of carboxyfluorescein, but rather weak leakage of sulforhodamine B and almost negligible leakage of calcein from the corresponding dye-loaded liposomes. The same series of selectivity of liposome leakage was obtained with chlorin e6 that appeared to be more potent than AlPcS(3) in bringing about the photosensitized liposome leakage. Electrically neutral zinc phthalocyanine tetrasubstituted with a glycerol moiety (ZnPcGlyc(4)) was less effective than negatively charged AlPcS(3) in provoking the light-induced liposome permeabilization. On the contrary, both ZnPcGlyc(4) and AlPcS(3) were much more effective than chlorin e6 in sensitizing gramicidin channel inactivation in planar bilayer lipid membranes, thus showing that relative photodynamic efficacy of sensitizers can differ substantially for damaging different membrane targets. The photosensitized liposome permeabilization was apparently associated with oxidation of lipid double bonds by singlet oxygen as evidenced by the mandatory presence of unsaturated lipids in the membrane composition for the photosensitized liposome leakage to occur and the sensitivity of the latter to sodium azide. The fluorescence correlation spectroscopy measurements revealed marked permeability of photodynamically induced pores in liposome membranes for such photosensitizer as AlPcS(3).