Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yusheng Liao is active.

Publication


Featured researches published by Yusheng Liao.


Journal of Medicinal Chemistry | 2008

Novel Dual-Targeting Benzimidazole Urea Inhibitors of DNA Gyrase and Topoisomerase IV Possessing Potent Antibacterial Activity: Intelligent Design and Evolution through the Judicious Use of Structure-Guided Design and Stucture−Activity Relationships

Paul S. Charifson; Anne-Laure Grillot; Trudy H. Grossman; Jonathan D. Parsons; Michael Badia; Steve Bellon; David D. Deininger; Joseph Drumm; Christian H. Gross; Arnaud Letiran; Yusheng Liao; Nagraj Mani; David P. Nicolau; Emanuele Perola; Steven Ronkin; Dean Shannon; Lora Swenson; Qing Tang; Pamela R. Tessier; Ski-Kai Tian; Martin Trudeau; Tiansheng Wang; Yunyi Wei; Hong Zhang; Dean Stamos

The discovery of new antibacterial agents with novel mechanisms of action is necessary to overcome the problem of bacterial resistance that affects all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV are well-characterized clinically validated targets of the fluoroquinolone antibiotics which exert their antibacterial activity through inhibition of the catalytic subunits. Inhibition of these targets through interaction with their ATP sites has been less clinically successful. The discovery and characterization of a new class of low molecular weight, synthetic inhibitors of gyrase and topoisomerase IV that bind to the ATP sites are presented. The benzimidazole ureas are dual targeting inhibitors of both enzymes and possess potent antibacterial activity against a wide spectrum of relevant pathogens responsible for hospital- and community-acquired infections. The discovery and optimization of this novel class of antibacterials by the use of structure-guided design, modeling, and structure-activity relationships are described. Data are presented for enzyme inhibition, antibacterial activity, and in vivo efficacy by oral and intravenous administration in two rodent infection models.


Antimicrobial Agents and Chemotherapy | 2007

Dual Targeting of GyrB and ParE by a Novel Aminobenzimidazole Class of Antibacterial Compounds

Trudy H. Grossman; Douglas J. Bartels; Steve Mullin; Christian H. Gross; Jonathan D. Parsons; Yusheng Liao; Anne-Laure Grillot; Dean Stamos; Eric R. Olson; Paul S. Charifson; Nagraj Mani

ABSTRACT A structure-guided drug design approach was used to optimize a novel series of aminobenzimidazoles that inhibit the essential ATPase activities of bacterial DNA gyrase and topoisomerase IV and that show potent activities against a variety of bacterial pathogens. Two such compounds, VRT-125853 and VRT-752586, were characterized for their target specificities and preferences in bacteria. In metabolite incorporation assays, VRT-125853 inhibited both DNA and RNA synthesis but had little effect on protein synthesis. Both compounds inhibited the maintenance of negative supercoils in plasmid DNA in Escherichia coli at the MIC. Sequencing of DNA corresponding to the GyrB and ParE ATP-binding regions in VRT-125853- and VRT-752586-resistant mutants revealed that their primary target in Staphylococcus aureus and Haemophilus influenzae was GyrB, whereas in Streptococcus pneumoniae it was ParE. In Enterococcus faecalis, the primary target of VRT-125853 was ParE, whereas for VRT-752586 it was GyrB. DNA transformation experiments with H. influenzae and S. aureus proved that the mutations observed in gyrB resulted in decreased susceptibilities to both compounds. Novobiocin resistance-conferring mutations in S. aureus, H. influenzae, and S. pneumoniae were found in gyrB, and these mutants showed little or no cross-resistance to VRT-125853 or VRT-752586 and vice versa. Furthermore, gyrB and parE double mutations increased the MICs of VRT-125853 and VRT-752586 significantly, providing evidence of dual targeting. Spontaneous frequencies of resistance to VRT-752586 were below detectable levels (<5.2 × 10−10) for wild-type E. faecalis but were significantly elevated for strains containing single and double target-based mutations, demonstrating that dual targeting confers low levels of resistance emergence and the maintenance of susceptibility in vitro.


Antimicrobial Agents and Chemotherapy | 2006

In vitro characterization of the antibacterial spectrum of novel bacterial type II topoisomerase inhibitors of the aminobenzimidazole class.

Nagraj Mani; Christian H. Gross; Jonathan D. Parsons; Brian Hanzelka; Ute Müh; Steve Mullin; Yusheng Liao; Anne-Laure Grillot; Dean Stamos; Paul S. Charifson; Trudy H. Grossman

ABSTRACT Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.


Journal of Medicinal Chemistry | 2014

Second-generation antibacterial benzimidazole ureas: discovery of a preclinical candidate with reduced metabolic liability.

Anne-Laure Grillot; Arnaud Le Tiran; Dean Shannon; Elaine Krueger; Yusheng Liao; Hardwin O’Dowd; Qing Tang; Steve Ronkin; Tiansheng Wang; Nathan D. Waal; Pan Li; David Lauffer; Emmanuelle Sizensky; Jerry Tanoury; Emanuele Perola; Trudy H. Grossman; Timothy Doyle; Brian Hanzelka; Steven J.M. Jones; Vaishali Dixit; Nigel Ewing; Shengkai Liao; Brian Boucher; Marc Jacobs; Youssef L. Bennani; Paul S. Charifson

Compound 3 is a potent aminobenzimidazole urea with broad-spectrum Gram-positive antibacterial activity resulting from dual inhibition of bacterial gyrase (GyrB) and topoisomerase IV (ParE), and it demonstrates efficacy in rodent models of bacterial infection. Preclinical in vitro and in vivo studies showed that compound 3 covalently labels liver proteins, presumably via formation of a reactive metabolite, and hence presented a potential safety liability. The urea moiety in compound 3 was identified as being potentially responsible for reactive metabolite formation, but its replacement resulted in loss of antibacterial activity and/or oral exposure due to poor physicochemical parameters. To identify second-generation aminobenzimidazole ureas devoid of reactive metabolite formation potential, we implemented a metabolic shift strategy, which focused on shifting metabolism away from the urea moiety by introducing metabolic soft spots elsewhere in the molecule. Aminobenzimidazole urea 34, identified through this strategy, exhibits similar antibacterial activity as that of 3 and did not label liver proteins in vivo, indicating reduced/no potential for reactive metabolite formation.


Journal of Medicinal Chemistry | 2015

Discovery of Highly Isoform Selective Thiazolopiperidine Inhibitors of Phosphoinositide 3-Kinase γ

Philip N. Collier; David Messersmith; Arnaud Le Tiran; Upul K. Bandarage; Christina Boucher; Jon Come; Kevin M. Cottrell; Veronique Damagnez; John D. Doran; James P. Griffith; Suvarna Khare-Pandit; Elaine Krueger; Mark Ledeboer; Brian Ledford; Yusheng Liao; Sudipta Mahajan; Cameron Stuver Moody; Setu Roday; Tiansheng Wang; Jinwang Xu; Alex Aronov

A series of high affinity second-generation thiazolopiperidine inhibitors of PI3Kγ were designed based on some general observations around lipid kinase structure. Optimization of the alkylimidazole group led to inhibitors with higher levels of PI3Kγ selectivity. Additional insights into PI3K isoform selectivity related to sequence differences in a known distal hydrophobic pocket are also described.


Bioorganic & Medicinal Chemistry Letters | 2014

Successful application of serum shift prediction models to the design of dual targeting inhibitors of bacterial gyrase B and topoisomerase IV with improved in vivo efficacy

Emanuele Perola; Dean Stamos; Anne-Laure Grillot; Steven Ronkin; Tiansheng Wang; Arnaud Letiran; Qing Tang; David D. Deininger; Yusheng Liao; Shi-Kai Tian; Joseph Drumm; David P. Nicolau; Pamela R. Tessier; Nagraj Mani; Trudy H. Grossman; Paul S. Charifson

A series of dual targeting inhibitors of bacterial gyrase B and topoisomerase IV were identified and optimized to mid-to-low nanomolar potency against a variety of bacteria. However, in spite of seemingly adequate exposure achieved upon IV administration, the in vivo efficacy of the early lead compounds was limited by high levels of binding to serum proteins. To overcome this limitation, targeted serum shift prediction models were generated for each subclass of interest and were applied to the design of prospective analogs. As a result, numerous compounds with comparable antibacterial potency and reduced protein binding were generated. These efforts culminated in the synthesis of compound 10, a potent inhibitor with low serum shift that demonstrated greatly improved in vivo efficacy in two distinct rat infection models.


Journal of Medicinal Chemistry | 2018

Design and Synthesis of a Novel Series of Orally Bioavailable, CNS-Penetrant, Isoform Selective Phosphoinositide 3-Kinase γ (PI3Kγ) Inhibitors with Potential for the Treatment of Multiple Sclerosis (MS)

Jon H. Come; Philip N. Collier; James A. Henderson; Albert Pierce; Robert J. Davies; Arnaud Le Tiran; Hardwin O’Dowd; Upul K. Bandarage; Jingrong Cao; David D. Deininger; Ron Grey; Elaine Krueger; Derek Lowe; Jianglin Liang; Yusheng Liao; David Messersmith; Suganthi Nanthakumar; Emmanuelle Sizensky; Jian Wang; Jinwang Xu; Elaine Y. Chin; Veronique Damagnez; John D. Doran; Wojciech Dworakowski; James P. Griffith; Marc Jacobs; Suvarna Khare-Pandit; Sudipta Mahajan; Cameron Stuver Moody; Alex Aronov

The lipid kinase phosphoinositide 3-kinase γ (PI3Kγ) has attracted attention as a potential target to treat a variety of autoimmune disorders, including multiple sclerosis, due to its role in immune modulation and microglial activation. By minimizing the number of hydrogen bond donors while targeting a previously uncovered selectivity pocket adjacent to the ATP binding site of PI3Kγ, we discovered a series of azaisoindolinones as selective, brain penetrant inhibitors of PI3Kγ. This ultimately led to the discovery of 16, an orally bioavailable compound that showed efficacy in murine experimental autoimmune encephalomyelitis (EAE), a preclinical model of multiple sclerosis.


Archive | 2004

Gyrase inhibitors and uses thereof

Paul S. Charifson; David D. Deininger; Anne-Laure Grillot; Yusheng Liao; Steven Ronkin; Dean Stamos; Emanuele Perola; Tiansheng Wang; Arnaud Letiran; Joseph Drumm


Archive | 2001

Bacterial gyrase inhibitors and uses thereof

Paul S. Charifson; Anne-Laure Grillot; Yusheng Liao; Dean Stamos; Martin Trudeau


Archive | 2010

Isoindolinone inhibitors of phosphatidylinositol 3-kinase

Alex Aronov; Jon H. Come; Robert J. Davies; Albert Pierce; Jian Wang; Suganthini Nanthakumar; Jingrong Cao; Upul K. Bandarage; Elaine Krueger; Amaud Le Tiran; Yusheng Liao; David Messersmith; Philip N. Collier; Ronald Grey; Hardwin O'dowd; James A. Henderson; Anne-Laure Grillot

Collaboration


Dive into the Yusheng Liao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean Stamos

Vertex Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Wang

Vertex Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge