Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yusuke Onoda is active.

Publication


Featured researches published by Yusuke Onoda.


Science | 2013

Essential Biodiversity Variables

Henrique M. Pereira; Simon Ferrier; Michele Walters; Gary N. Geller; R.H.G. Jongman; Robert J. Scholes; Michael William Bruford; Neil Brummitt; Stuart H. M. Butchart; A C Cardoso; E Dulloo; Daniel P. Faith; Jörg Freyhof; Richard D. Gregory; Carlo H. R. Heip; Robert Höft; George C. Hurtt; Walter Jetz; Daniel S. Karp; Melodie A. McGeoch; D Obura; Yusuke Onoda; Nathalie Pettorelli; Belinda Reyers; Roger Sayre; Joern P. W. Scharlemann; Simon N. Stuart; Eren Turak; Matt Walpole; Martin Wegmann

A global system of harmonized observations is needed to inform scientists and policy-makers. Reducing the rate of biodiversity loss and averting dangerous biodiversity change are international goals, reasserted by the Aichi Targets for 2020 by Parties to the United Nations (UN) Convention on Biological Diversity (CBD) after failure to meet the 2010 target (1, 2). However, there is no global, harmonized observation system for delivering regular, timely data on biodiversity change (3). With the first plenary meeting of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) soon under way, partners from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (4) are developing—and seeking consensus around—Essential Biodiversity Variables (EBVs) that could form the basis of monitoring programs worldwide.


Ecology Letters | 2011

Global patterns of leaf mechanical properties

Yusuke Onoda; Mark Westoby; Peter B. Adler; Amy M.F. Choong; Fiona J. Clissold; Johannes H. C. Cornelissen; Sandra Díaz; Nathaniel J. Dominy; Alison A. Elgart; Lucas Enrico; Paul V. A. Fine; Jerome J. Howard; Adel Jalili; Kaoru Kitajima; Hiroko Kurokawa; Clare McArthur; Peter W. Lucas; Lars Markesteijn; Natalia Pérez-Harguindeguy; Lourens Poorter; Lora A. Richards; Louis S. Santiago; Enio Sosinski; Sunshine A. Van Bael; David I. Warton; Ian J. Wright; S. Joseph Wright; Nayuta Yamashita

Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.


Nature | 2016

Plant functional traits have globally consistent effects on competition

Georges Kunstler; Daniel S. Falster; David A. Coomes; Francis K. C. Hui; Robert M. Kooyman; Daniel C. Laughlin; Lourens Poorter; Mark C. Vanderwel; Ghislain Vieilledent; S. Joseph Wright; Masahiro Aiba; Christopher Baraloto; John P. Caspersen; J. Hans C. Cornelissen; Sylvie Gourlet-Fleury; Marc Hanewinkel; Bruno Hérault; Jens Kattge; Hiroko Kurokawa; Yusuke Onoda; Josep Peñuelas; Hendrik Poorter; María Uriarte; Sarah J. Richardson; Paloma Ruiz-Benito; I-Fang Sun; Göran Ståhl; Nathan G. Swenson; Jill Thompson; Bertil Westerlund

Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits—wood density, specific leaf area and maximum height—consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.


New Phytologist | 2017

Physiological and structural tradeoffs underlying the leaf economics spectrum

Yusuke Onoda; Ian J. Wright; John R. Evans; Kouki Hikosaka; Kaoru Kitajima; Ülo Niinemets; Hendrik Poorter; Tiina Tosens; Mark Westoby

The leaf economics spectrum (LES) represents a suite of intercorrelated leaf traits concerning construction costs per unit leaf area, nutrient concentrations, and rates of carbon fixation and tissue turnover. Although broad trade-offs among leaf structural and physiological traits have been demonstrated, we still do not have a comprehensive view of the fundamental constraints underlying the LES trade-offs. Here, we investigated physiological and structural mechanisms underpinning the LES by analysing a novel data compilation incorporating rarely considered traits such as the dry mass fraction in cell walls, nitrogen allocation, mesophyll CO2 diffusion and associated anatomical traits for hundreds of species covering major growth forms. The analysis demonstrates that cell wall constituents are major components of leaf dry mass (18-70%), especially in leaves with high leaf mass per unit area (LMA) and long lifespan. A greater fraction of leaf mass in cell walls is typically associated with a lower fraction of leaf nitrogen (N) invested in photosynthetic proteins; and lower within-leaf CO2 diffusion rates, as a result of thicker mesophyll cell walls. The costs associated with greater investments in cell walls underpin the LES: long leaf lifespans are achieved via higher LMA and in turn by higher cell wall mass fraction, but this inevitably reduces the efficiency of photosynthesis.


New Phytologist | 2010

The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species

Yusuke Onoda; Anna E. Richards; Mark Westoby

*Stem mechanical properties are critically linked to foliage deployment and growth strategy, yet variation in stem mechanics across species and habitats is poorly understood. *Here, we compared 32 plant species growing across four sites of contrasting rainfall and soil nutrient availability in Australia. *The modulus of elasticity (MOE) and modulus of rupture (MOR) were tightly correlated with dry sapwood density within sites, but species from low-rainfall environments had higher wood density for a given MOE and MOR compared with species growing in high-rainfall environments. The ratio of MOE to MOR was slightly lower for species at low-rainfall sites, suggesting that wood was stronger for a given elasticity. Most species had thick bark, but the mechanical contribution of bark to stem MOE was small. *Our results suggest that arid-adapted species would need to deploy more dry mass to support stems. Our results also highlight the importance of understanding how the biomechanics-wood density relationship evolves under different environmental conditions to better understand plant growth across diverse habitats.


New Phytologist | 2010

Reconciling species‐level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight

Christopher H. Lusk; Yusuke Onoda; Robert M. Kooyman; Alba Gutiérrez-Girón

*When grown in a common light environment, the leaves of shade-tolerant evergreen trees have a larger leaf mass per unit area (LMA) than their light-demanding counterparts, associated with differences in lifespan. Yet plastic responses of LMA run counter to this pattern: shade leaves have smaller LMA than sun leaves, despite often living longer. *We measured LMA and cell wall content, and conducted punch and shear tests, on sun and shade leaves of 13 rainforest evergreens of differing shade tolerance, in order to understand adaptation vs plastic responses of leaf structure and biomechanics to shade. *Species shade tolerance and leaf mechanical properties correlated better with cell wall mass per unit area than with LMA. Growth light environment had less effect on leaf mechanics than on LMA: shade leaves had, on average, 40% lower LMA than sun leaves, but differences in work-to-shear, and especially force-to-punch, were smaller. This was associated with a slightly larger cell wall fraction in shade leaves. *The persistence of shade leaves might reflect unattractiveness to herbivores because they yield smaller benefits (cell contents per area) per unit fracture force than sun leaves. In forest trees, cell wall fraction and force-to-punch are more robust correlates of species light requirements than LMA.


Journal of Ecology | 2014

Trade-off between light interception efficiency and light use efficiency: implications for species coexistence in one-sided light competition

Yusuke Onoda; Jema B. Saluñga; Kosuke Akutsu; Shin-ichiro Aiba; Tetsukazu Yahara; Niels P. R. Anten

Summary 1. Taller plant species can pre-empt solar energy and suppress growth of subordinate species in vegetation stands, which is described through one-sided competition. Yet, in much of the world’s vegetation species of different statures coexist. This study aims to clarify the mechanisms underlying this apparent paradox. 2. We quantified how co-occurring species and individuals intercepted and used light for growth in a mature, warm-temperate evergreen forest. This was performed by determining the 3D distribution of foliage and light with a ground-based lidar system in combination with nondestructive measurements of plant growth. 3. Taller trees intercepted light more efficiently per unit of above-ground biomass than shorter trees did (=higher light interception efficiency, LIE). However, taller trees tended to have lower biomass production per unit light interception (=lower light use efficiency, LUE). Reduced LUE in taller trees was associated with their higher biomass allocation to nonphotosynthetic organs and probably with over-saturated light intensity for photosynthesis at high canopy positions. Due to the increased LIE and decreased LUE with tree heights, a trade-off between LIE and LUE was found, and this trade-off resulted in trees of different statures having similar relative growth rates. 4. Synthesis. Light competition drives trees to grow taller, and the light interception efficiency is higher in taller trees; however, this benefit comes at a cost of decreased efficiency of light use for growth. This trade-off allows trees of different statures to grow at proportionally comparable rates and may promote coexistence of tree species in one-sided light competition.


Taxon | 2013

Global legume diversity assessment : concepts, key indicators, and strategies

Tetsukazu Yahara; Firouzeh Javadi; Yusuke Onoda; Luciano Paganucci de Queiroz; Daniel P. Faith; Darién E. Prado; Munemitsu Akasaka; Taku Kadoya; Fumiko Ishihama; Stuart J. Davies; J. W. Ferry Slik; Ting-Shuang Yi; Keping Ma; Chen Bin; Dedy Darnaedi; R. Toby Pennington; Midori Tuda; Masakazu Shimada; Motomi Ito; Ashley N. Egan; Sven Buerki; Niels Raes; Tadashi Kajita; Mohammad Vatanparast; Makiko Mimura; Hidenori Tachida; Yoh Iwasa; Gideon F. Smith; Janine E. Victor; Tandiwe Nkonki

While many plant species are considered threatened under anthropogenic pressure, it remains uncertain how rapidly we are losing plant species diversity. To fill this gap, we propose a Global Legume Diversity Assessment (GLDA) as the first step of a global plant diversity assessment. Here we describe the concept of GLDA and its feasibility by reviewing relevant approaches and data availability. We conclude that Fabaceae is a good proxy for overall angiosperm diversity in many habitats and that much relevant data for GLDA are available. As indicators of states, we propose comparison of species richness with phylogenetic and functional diversity to obtain an integrated picture of diversity. As indicators of trends, species loss rate and extinction risks should be assessed. Specimen records and plot data provide key resources for assessing legume diversity at a global scale, and distribution modeling based on these records provide key methods for assessing states and trends of legume diversity. GLDA has started in Asia, and we call for a truly global legume diversity assessment by wider geographic collabora- tions among various scientists.


New Phytologist | 2012

Safety and streamlining of woody shoots in wind : an empirical study across 39 species in tropical Australia

Don W. Butler; Sean M. Gleason; Ian Davidson; Yusuke Onoda; Mark Westoby

• Wind is a key mechanical stress for woody plants, so how do shoot traits affect performance in wind? • We used a vehicle mounted apparatus to measure drag, streamlining and mechanical safety in 127 vertical lead-shoots, 1.2 m long, across 39 species in tropical Australia. • Shoot dimensions and stem tissue properties were closely coupled so that shoots with low stem specific gravity or larger projected area had thicker stems. Thicker stems provide larger second moment of area (I), which increased shoot safety and bending stiffness but impeded shoot reconfiguration in strong winds, including frontal area reduction. Nonetheless, increasing I also improved streamlining. Streamlining was unrelated to traits except I. Stem tissue material properties only had small effects. Higher modulus of rupture increased shoot safety and higher Youngs modulus impeded shoot reconfiguration. • We found no conflict between bending stiffness and streamlining for woody shoots. Stiffness might help streamlining by increasing damping and stability, thereby reducing flagging in wind. Tissue-level traits did influence shoot-level mechanical safety and behaviour, but shoot geometry was much more important. Variable shoot and stem traits, which all influenced shoot biomechanics, were integrated in shoots to yield a relatively narrow range of outcomes in wind.


Philosophical Transactions of the Royal Society B | 2015

effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of kampong thom, cambodia

Hironori Toyama; Tsuyoshi Kajisa; Shuichiro Tagane; Keiko Mase; Phourin Chhang; Vanna Samreth; Vuthy Ma; Heng Sokh; Ryuji Ichihashi; Yusuke Onoda; Nobuya Mizoue; Tetsukazu Yahara

Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging.

Collaboration


Dive into the Yusuke Onoda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Joseph Wright

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge