Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yusuke Saijo is active.

Publication


Featured researches published by Yusuke Saijo.


Science | 2007

Nuclear Activity of MLA Immune Receptors Links Isolate-Specific and Basal Disease-Resistance Responses

Qian-Hua Shen; Yusuke Saijo; Stefan Mauch; Christoph Biskup; Stéphane Bieri; Beat Keller; Hikaru Seki; Bekir Ülker; Imre E. Somssich; Paul Schulze-Lefert

Plant immune responses are triggered by pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs) or by resistance (R) proteins recognizing isolate-specific pathogen effectors. We show that in barley, intracellular mildew A (MLA) R proteins function in the nucleus to confer resistance against the powdery mildew fungus. Recognition of the fungal avirulence A10 effector by MLA10 induces nuclear associations between receptor and WRKY transcription factors. The identified WRKY proteins act as repressors of PAMP-triggered basal defense. MLA appears to interfere with the WRKY repressor function, thereby de-repressing PAMP-triggered basal defense. Our findings reveal a mechanism by which these polymorphic immune receptors integrate distinct pathogen signals.


The EMBO Journal | 2009

Receptor quality control in the endoplasmic reticulum for plant innate immunity

Yusuke Saijo; Nico Tintor; Xunli Lu; Philipp Rauf; Karolina M. Pajerowska-Mukhtar; Heidrun Häweker; Xinnian Dong; Silke Robatzek; Paul Schulze-Lefert

Pattern recognition receptors in eukaryotes initiate defence responses on detection of microbe‐associated molecular patterns shared by many microbe species. The Leu‐rich repeat receptor‐like kinases FLS2 and EFR recognize the bacterial epitopes flg22 and elf18, derived from flagellin and elongation factor‐Tu, respectively. We describe Arabidopsis ‘priority in sweet life’ (psl) mutants that show de‐repressed anthocyanin accumulation in the presence of elf18. EFR accumulation and signalling, but not of FLS2, are impaired in psl1, psl2, and stt3a plants. PSL1 and PSL2, respectively, encode calreticulin3 (CRT3) and UDP‐glucose:glycoprotein glycosyltransferase that act in concert with STT3A‐containing oligosaccharyltransferase complex in an N‐glycosylation pathway in the endoplasmic reticulum. However, EFR‐signalling function is impaired in weak psl1 alleles despite its normal accumulation, thereby uncoupling EFR abundance control from quality control. Furthermore, salicylic acid‐induced, but EFR‐independent defence is weakened in psl2 and stt3a plants, indicating the existence of another client protein than EFR for this immune response. Our findings suggest a critical and selective function of N‐glycosylation for different layers of plant immunity, likely through quality control of membrane‐localized regulators.


Journal of Biological Chemistry | 2010

Pattern recognition receptors require N-glycosylation to mediate plant immunity

Heidrun Häweker; Stephan Rips; Hisashi Koiwa; Susanne Salomon; Yusuke Saijo; Delphine Chinchilla; Silke Robatzek; Antje von Schaewen

N-Glycans attached to the ectodomains of plasma membrane pattern recognition receptors constitute likely initial contact sites between plant cells and invading pathogens. To assess the role of N-glycans in receptor-mediated immune responses, we investigated the functionality of Arabidopsis receptor kinases EFR and FLS2, sensing bacterial translation elongation factor Tu (elf18) and flagellin (flg22), respectively, in N-glycosylation mutants. As revealed by binding and responses to elf18 or flg22, both receptors tolerated immature N-glycans induced by mutations in various Golgi modification steps. EFR was specifically impaired by loss-of-function mutations in STT3A, a subunit of the endoplasmic reticulum resident oligosaccharyltransferase complex. FLS2 tolerated mild underglycosylation occurring in stt3a but was sensitive to severe underglycosylation induced by tunicamycin treatment. EFR accumulation was significantly reduced when synthesized without N-glycans but to lesser extent when underglycosylated in stt3a or mutated in single amino acid positions. Interestingly, EFRN143Q lacking a single conserved N-glycosylation site from the EFR ectodomain accumulated to reduced levels and lost the ability to bind its ligand and to mediate elf18-elicited oxidative burst. However, EFR-YFP protein localization and peptide:N-glycosidase F digestion assays support that both EFR produced in stt3a and EFRN143Q in wild type cells correctly targeted to the plasma membrane via the Golgi apparatus. These results indicate that a single N-glycan plays a critical role for receptor abundance and ligand recognition during plant-pathogen interactions at the cell surface.


The Plant Cell | 2008

Biochemical Characterization of Arabidopsis Complexes Containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA Proteins in Light Control of Plant Development

Danmeng Zhu; Alexander Maier; Jae-Hoon Lee; Sascha Laubinger; Yusuke Saijo; Haiyang Wang; Li-Jia Qu; Ute Hoecker; Xing Wang Deng

COP1 (for CONSTITUTIVELY PHOTOMORPHOGENIC1) and the four partially redundant SPA (for SUPPRESSOR OF PHYA) proteins work in concert to repress photomorphogenesis in Arabidopsis thaliana by targeting key transcription factors and phytochrome A for degradation via the 26S proteasome. Here, we report a detailed biochemical characterization of the SPA-COP1 complexes. The four endogenous SPA proteins can form stable complexes with COP1 in vivo regardless of light conditions but exhibit distinct expression profiles in different tissues and light conditions. The SPA proteins can self-associate or interact with each other, forming a heterogeneous group of SPA-COP1 complexes in which the exact SPA protein compositions vary depending on the abundance of individual SPA proteins. The four SPA proteins could be divided into two functional groups depending on their interaction affinities, their regulation of ELONGATED HYPOCOTYL5 degradation, and their opposite effects on COP1 protein accumulation. Loss-of-function mutations in a predominant SPA protein may cause a significant reduction in the overall SPA-COP1 E3 ligase activity, resulting in a partial constitutive photomorphogenic phenotype. This study thus provides an in-depth biochemical view of the SPA-COP1 E3 ligase complexes and offers new insights into the molecular basis for their distinct roles in the light control of plant development.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele

Xunli Lu; Nico Tintor; Tobias Mentzel; Erich Kombrink; Thomas Boller; Silke Robatzek; Paul Schulze-Lefert; Yusuke Saijo

Recognition of microbe-associated molecular patterns (MAMPs), conserved structures typical of a microbial class, triggers immune responses in eukaryotes. This is accompanied by a diverse set of physiological responses that are thought to enhance defense activity in plants. However, the extent and mechanisms by which MAMP-induced events contribute to host immunity are poorly understood. Here we reveal Arabidopsis priority in sweet life4 (psl4) and psl5 mutants that are insensitive to the bacterial elongation factor (EF)-Tu epitope elf18 but responsive to flagellin epitope flg22. PSL4 and PSL5, respectively, identify β- and α-subunits of endoplasmic reticulum-resident glucosidase II, which is essential for stable accumulation and quality control of the elf18 receptor EFR but not the flg22 receptor FLS2. We notice that EFR signaling is partially and differentially impaired without a significant decrease of the receptor steady-state levels in 2 weakly dysfunctional gIIα alleles, designated psl5-1 and rsw3. Remarkably, rsw3 plants exhibit marked supersusceptibility against a virulent bacterial phytopathogen despite nearly intact coactivation of MAPKs, reactive oxygen species, ethylene biosynthesis, and callose deposition in response to elf18, demonstrating that these signaling outputs alone are insufficient to mount effective immunity. However, rsw3 plants fail to maintain high transcript levels of defense-promoting WRKY, PR1, and PR2 genes at late time points (4 to 24 h) after elf18 elicitation. This points to an unexpected separation between initial and sustained activation of EFR-mediated signaling in the absence of proper glucosidase II-mediated endoplasmic reticulum quality control. Our findings strongly suggest the importance of sustained MAMP receptor signaling as a key step in the establishment of robust immunity.


Molecular Cell | 2008

Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling.

Yusuke Saijo; Danmeng Zhu; Jigang Li; Vicente Rubio; Zhenzhen Zhou; Yunping Shen; Ute Hoecker; Haiyang Wang; Xing Wang Deng

Fine tuning of light signaling is crucial to plant development. Following light-triggered nuclear translocation, the photoreceptor phytochrome A (phyA) regulates gene expression under continuous far-red light and is rapidly destabilized upon red light irradiation by E3 ubiquitin ligases, including COP1. Here we provide evidence that the light signaling repressors SPA proteins contribute to COP1-mediated phyA degradation and that a COP1/SPA1 protein complex is tightly associated with phyA ubiquitination activity. Furthermore, a phosphorylated phyA form accumulates in the nucleus and preferentially associates with the COP1/SPA1 complex. In contrast, underphosphorylated phyA predominantly associates with the phyA-signaling intermediates FHY3 and FHY1. However, COP1 associates with underphosphorylated phyA in the absence of FHY3 or FHY1, suggesting that phyA associations with FHY3 and FHY1 protect underphosphorylated phyA from being recognized by the COP1/SPA complex. We propose that light-induced phyA phosphorylation acts as a switch controlling differential interactions of the photoreceptor with signal propagation or attenuation machineries.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection

Nico Tintor; Annegret Ross; Kazue Kanehara; Kohji Yamada; Li Fan; Birgit Kemmerling; Thorsten Nürnberger; Kenichi Tsuda; Yusuke Saijo

Recognition of molecular patterns characteristic of microbes or altered-self leads to immune activation in multicellular eukaryotes. In Arabidopsis thaliana, the leucine-rich-repeat receptor kinases FLAGELLIN-SENSING2 (FLS2) and EF-TU RECEPTOR (EFR) recognize bacterial flagellin and elongation factor EF-Tu (and their elicitor-active epitopes flg22 and elf18), respectively. Likewise, PEP1 RECEPTOR1 (PEPR1) and PEPR2 recognize the elicitor-active Pep epitopes conserved in Arabidopsis ELICITOR PEPTIDE PRECURSORs (PROPEPs). Here we reveal that loss of ETHYLENE-INSENSITIVE2 (EIN2), a master signaling regulator of the phytohormone ethylene (ET), lowers sensitivity to both elf18 and flg22 in different defense-related outputs. Remarkably, in contrast to a large decrease in FLS2 expression, EFR expression and receptor accumulation remain unaffected in ein2 plants. Genome-wide transcriptome profiling has uncovered an inventory of EIN2-dependent and EFR-regulated genes. This dataset highlights important aspects of how ET modulates EFR-triggered immunity: the potentiation of salicylate-based immunity and the repression of a jasmonate-related branch. EFR requires ET signaling components for PROPEP2 activation but not for PROPEP3 activation, pointing to both ET-dependent and -independent engagement of the PEPR pathway during EFR-triggered immunity. Moreover, PEPR activation compensates the ein2 defects for a subset of EFR-regulated genes. Accordingly, ein2 pepr1 pepr2 plants exhibit additive defects in EFR-triggered antibacterial immunity, compared with ein2 or pepr1 pepr2 plants. Our findings suggest that the PEPR pathway not only mediates ET signaling but also compensates for its absence in enhancing plant immunity.


Cellular Microbiology | 2010

ER quality control of immune receptors and regulators in plants

Yusuke Saijo

Like in animals, cell surface and intracellular receptors mediate immune recognition of potential microbial intruders in plants. Membrane‐localized pattern recognition receptors (PRRs) initiate immune responses upon perception of cognate microbe‐associated molecular patterns (MAMPs). MAMP‐triggered immunity provides a first line of defence that restricts the invasion and propagation of both adapted and non‐adapted pathogens. The Leu‐rich repeat (LRR) receptor protein kinases (RKs) define a major class of trans‐membrane receptors in plants, of which some members are engaged in MAMP recognition and/or defence signalling. The endoplasmic reticulum (ER) quality control (QC) systems monitor N‐glycosylation and folding states of the extracellular, ligand‐binding LRR domains of LRR‐RKs. Recent progress reveals a critical role of evolutionarily conserved ERQC components for different layers of plant immunity. N‐glycosylation appears to play a role in ERQC fidelity rather than in ligand binding of LRR‐RKs. Moreover, even closely related PRRs show receptor‐specific requirements for N‐glycosylation. These findings are reminiscent of the earlier defined function of the cytosolic chaperon complex for LRR domain‐containing intracellular immune receptors. QC of the LRR domains might provide a basis not only for the maintenance but also for diversification of recognition specificities for immune receptors in plants.


PLOS ONE | 2010

Higher Plant Calreticulins Have Acquired Specialized Functions in Arabidopsis

Anna Christensen; Karin Svensson; Lisa Thelin; Wenjing Zhang; Nico Tintor; Daniel Prins; Norma Funke; Marek Michalak; Paul Schulze-Lefert; Yusuke Saijo; Marianne Sommarin; Susanne Widell; Staffan Persson

Background Calreticulin (CRT) is a ubiquitous ER protein involved in multiple cellular processes in animals, such as protein folding and calcium homeostasis. Like in animals, plants have evolved divergent CRTs, but their physiological functions are less understood. Arabidopsis contains three CRT proteins, where the two CRTs AtCRT1a and CRT1b represent one subgroup, and AtCRT3 a divergent member. Methodology/Principal Findings Through expression of single Arabidopsis family members in CRT-deficient mouse fibroblasts we show that both subgroups have retained basic CRT functions, including ER Ca2+-holding potential and putative chaperone capabilities. However, other more general cellular defects due to the absence of CRT in the fibroblasts, such as cell adhesion deficiencies, were not fully restored. Furthermore, in planta expression, protein localization and mutant analyses revealed that the three Arabidopsis CRTs have acquired specialized functions. The AtCRT1a and CRT1b family members appear to be components of a general ER chaperone network. In contrast, and as recently shown, AtCRT3 is associated with immune responses, and is essential for responsiveness to the bacterial Pathogen-Associated Molecular Pattern (PAMP) elf18, derived from elongation factor (EF)-Tu. Whereas constitutively expressed AtCRT1a fully complemented Atcrt1b mutants, AtCRT3 did not. Conclusions/Significance We conclude that the physiological functions of the two CRT subgroups in Arabidopsis have diverged, resulting in a role for AtCRT3 in PAMP associated responses, and possibly more general chaperone functions for AtCRT1a and CRT1b.


The EMBO Journal | 2014

The Arabidopsis PEPR pathway couples local and systemic plant immunity

Annegret Ross; Kohji Yamada; Kei Hiruma; Misuzu Yamashita-Yamada; Xunli Lu; Yoshitaka Takano; Kenichi Tsuda; Yusuke Saijo

Recognition of microbial challenges leads to enhanced immunity at both the local and systemic levels. In Arabidopsis, EFR and PEPR1/PEPR2 act as the receptor for the bacterial elongation factor EF‐Tu (elf18 epitope) and for the endogenous PROPEP‐derived Pep epitopes, respectively. The PEPR pathway has been described to mediate defence signalling following microbial recognition. Here we show that PROPEP2/PROPEP3 induction upon pathogen challenges is robust against jasmonate, salicylate, or ethylene dysfunction. Comparative transcriptome profiling between Pep2‐ and elf18‐treated plants points to co‐activation of otherwise antagonistic jasmonate‐ and salicylate‐mediated immune branches as a key output of PEPR signalling. Accordingly, as well as basal defences against hemibiotrophic pathogens, systemic immunity is reduced in pepr1 pepr2 plants. Remarkably, PROPEP2/PROPEP3 induction is essentially restricted to the pathogen challenge sites during pathogen‐induced systemic immunity. Localized Pep application activates genetically separable jasmonate and salicylate branches in systemic leaves without significant PROPEP2/PROPEP3 induction. Our results suggest that local PEPR activation provides a critical step in connecting local to systemic immunity by reinforcing separate defence signalling pathways.

Collaboration


Dive into the Yusuke Saijo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kei Hiruma

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kohji Yamada

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ko Shimamoto

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge