Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yutong Xue is active.

Publication


Featured researches published by Yutong Xue.


Molecular Cell | 1998

NURD, a Novel Complex with Both ATP-Dependent Chromatin-Remodeling and Histone Deacetylase Activities

Yutong Xue; Jiemin Wong; G.Tony Moreno; Mary K. Young; Jacques Côté; Weidong Wang

ATP-dependent chromatin-remodeling complexes are known to facilitate transcriptional activation by opening chromatin structures. We report a novel human complex, named NURD, which contains not only ATP-dependent nucleosome disruption activity, but also histone deacetylase activity, which usually associates with transcriptional repression. The deacetylation is stimulated by ATP on nucleosomal templates, suggesting that nucleosome disruption aids the deacetylase to access its substrates. One subunit of NURD was identified as MTA1, a metastasis-associated protein with a region similar to the nuclear receptor core-pressor, N-CoR; and antibodies against NURD partially relieve transcriptional repression by thyroid hormone receptor. These results suggest that ATP-dependent chromatin remodeling can participate in transcriptional repression by assisting repressors in gaining access to chromatin.


The EMBO Journal | 2007

FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway

Chen Ling; Masamichi Ishiai; Abdullah Mahmood Ali; Annette L. Medhurst; Kornelia Neveling; Reinhard Kalb; Zhijiang Yan; Yutong Xue; Anneke B. Oostra; Arleen D. Auerbach; Maureen E. Hoatlin; Detlev Schindler; Hans Joenje; Johan P. de Winter; Minoru Takata; Amom Ruhikanta Meetei; Weidong Wang

The Fanconi anemia (FA) core complex plays a central role in the DNA damage response network involving breast cancer susceptibility gene products, BRCA1 and BRCA2. The complex consists of eight FA proteins, including a ubiquitin ligase (FANCL) and a DNA translocase (FANCM), and is essential for monoubiquitination of FANCD2 in response to DNA damage. Here, we report a novel component of this complex, termed FAAP100, which is essential for the stability of the core complex and directly interacts with FANCB and FANCL to form a stable subcomplex. Formation of this subcomplex protects each component from proteolytic degradation and also allows their coregulation by FANCA and FANCM during nuclear localization. Using siRNA depletion and gene knockout techniques, we show that FAAP100‐deficient cells display hallmark features of FA cells, including defective FANCD2 monoubiquitination, hypersensitivity to DNA crosslinking agents, and genomic instability. Our study identifies FAAP100 as a new critical component of the FA‐BRCA DNA damage response network.


Human Molecular Genetics | 2008

FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair

Yutong Xue; Yongjiang Li; Rong Guo; Chen Ling; Weidong Wang

In response to DNA damage, the Fanconi anemia (FA) core complex functions as a signaling machine for monoubiquitination of FANCD2 and FANCI. It remains unclear whether this complex can also participate in subsequent DNA repair. We have shown previously that the FANCM constituent of the complex contains a highly conserved helicase domain and an associated ATP-dependent DNA translocase activity. Here we show that FANCM also possesses an ATP-independent binding activity and an ATP-dependent bi-directional branch-point translocation activity on a synthetic four-way junction DNA, which mimics intermediates generated during homologous recombination or at stalled replication forks. Using an siRNA-based complementation system, we found that the ATP-dependent activities of FANCM are required for cellular resistance to a DNA-crosslinking drug, mitomycin C, but not for the monoubiquitination of FANCD2 and FANCI. In contrast, monoubiquitination requires the entire helicase domain of FANCM, which has both ATP dependent and independent activities. These data are consistent with participation of FANCM and its associated FA core complex in the FA pathway at both signaling through monoubiquitination and the ensuing DNA repair.


Journal of Biological Chemistry | 2009

HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response.

Yongjiang Li; Emma Bolderson; Rakesh K. Kumar; Parameswary A. Muniandy; Yutong Xue; Derek J. Richard; Michael M. Seidman; Tej K. Pandita; Kum Kum Khanna; Weidong Wang

hSSB1 (human single strand DNA-binding protein 1) has been shown to participate in homologous recombination (HR)-dependent repair of DNA double strand breaks (DSBs) and ataxia telangiectasia-mutated (ATM)-mediated checkpoint pathways. Here we present evidence that hSSB2, a homolog of hSSB1, plays a role similar to hSSB1 in DNA damage-response pathways. This was evidenced by findings that hSSB2-depleted cells resemble hSSB1-depleted cells in hypersensitivity to DNA-damaging reagents, reduced efficiency in HR-dependent repair of DSBs, and defective ATM-dependent phosphorylation. Notably, hSSB1 and hSSB2 form separate complexes with two identical proteins, INTS3 and hSSBIP1 (C9ORF80). Cells depleted of INTS3 and hSSBIP1 also exhibited hypersensitivity to DNA damage reagents, chromosomal instability, and reduced ATM-dependent phosphorylation. hSSBIP1 was rapidly recruited to laser-induced DSBs, a feature also similar to that reported for hSSB1. Depletion of INTS3 decreased the stability of hSSB1 and hSSBIP1, suggesting that INTS3 may provide a scaffold to allow proper assembly of the hSSB complexes. Thus, our data demonstrate that hSSB1 and hSSB2 form two separate complexes with similar structures, and both are required for efficient HR-dependent repair of DSBs and ATM-dependent signaling pathways.


Nature Neuroscience | 2013

Top3β is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation

Dongyi Xu; Weiping Shen; Rong Guo; Yutong Xue; Wei Peng; Jian Sima; Jay Yang; Alexei A. Sharov; Subramanya Srikantan; Jiandong Yang; David Fox; Yong Qian; Jennifer L. Martindale; Yulan Piao; James B. Machamer; Samit R. Joshi; Subhasis Mohanty; Albert C. Shaw; Thomas E. Lloyd; Grant W. Brown; Minoru S.H. Ko; Myriam Gorospe; Sige Zou; Weidong Wang

Topoisomerases are crucial for solving DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3β (Top3β) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein that is deficient in fragile X syndrome and is known to regulate the translation of mRNAs that are important for neuronal function, abnormalities of which are linked to autism. Notably, the FMRP-Top3β interaction is abolished by a disease-associated mutation of FMRP, suggesting that Top3β may contribute to the pathogenesis of mental disorders. Top3β binds multiple mRNAs encoded by genes with neuronal functions linked to schizophrenia and autism. Expression of one such gene, that encoding protein tyrosine kinase 2 (ptk2, also known as focal adhesion kinase or FAK), is reduced in the neuromuscular junctions of Top3β mutant flies. Synapse formation is defective in Top3β mutant flies and mice, as well as in FMRP mutant flies and mice. Our findings suggest that Top3β acts as an RNA topoisomerase and works with FMRP to promote the expression of mRNAs that are crucial for neurodevelopment and mental health.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Defining the molecular interface that connects the Fanconi anemia protein FANCM to the Bloom syndrome dissolvasome

Kelly A. Hoadley; Yutong Xue; Chen Ling; Minoru Takata; Weidong Wang; James L. Keck

The RMI subcomplex (RMI1/RMI2) functions with the BLM helicase and topoisomerase IIIα in a complex called the “dissolvasome,” which separates double-Holliday junction DNA structures that can arise during DNA repair. This activity suppresses potentially harmful sister chromatid exchange (SCE) events in wild-type cells but not in cells derived from Bloom syndrome patients with inactivating BLM mutations. The RMI subcomplex also associates with FANCM, a component of the Fanconi anemia (FA) core complex that is important for repair of stalled DNA replication forks. The RMI/FANCM interface appears to help coordinate dissolvasome and FA core complex activities, but its precise role remains poorly understood. Here, we define the structure of the RMI/FANCM interface and investigate its roles in coordinating cellular DNA-repair activities. The X-ray crystal structure of the RMI core complex bound to a well-conserved peptide from FANCM shows that FANCM binds to both RMI proteins through a hydrophobic “knobs-into-holes” packing arrangement. The RMI/FANCM interface is shown to be critical for interaction between the components of the dissolvasome and the FA core complex. FANCM variants that substitute alanine for key interface residues strongly destabilize the complex in solution and lead to increased SCE levels in cells that are similar to those observed in blm- or fancm-deficient cells. This study provides a molecular view of the RMI/FANCM complex and highlights a key interface utilized in coordinating the activities of two critical eukaryotic DNA-damage repair machines.


Nucleic Acids Research | 2016

RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals

Muzammil Ahmad; Yutong Xue; Seung Kyu Lee; Jennifer L. Martindale; Weiping Shen; Wen Li; Sige Zou; Maria Ciaramella; Hélène Débat; Marc Nadal; Fenfei Leng; Hongliang Zhang; Quan Wang; Grace Ee-Lu Siaw; Hengyao Niu; Yves Pommier; Myriam Gorospe; Tao-shih Hsieh; Yuk-Ching Tse-Dinh; Dongyi Xu; Weidong Wang

DNA Topoisomerases are essential to resolve topological problems during DNA metabolism in all species. However, the prevalence and function of RNA topoisomerases remain uncertain. Here, we show that RNA topoisomerase activity is prevalent in Type IA topoisomerases from bacteria, archaea, and eukarya. Moreover, this activity always requires the conserved Type IA core domains and the same catalytic residue used in DNA topoisomerase reaction; however, it does not absolutely require the non-conserved carboxyl-terminal domain (CTD), which is necessary for relaxation reactions of supercoiled DNA. The RNA topoisomerase activity of human Top3β differs from that of Escherichia coli topoisomerase I in that the former but not the latter requires the CTD, indicating that topoisomerases have developed distinct mechanisms during evolution to catalyze RNA topoisomerase reactions. Notably, Top3β proteins from several animals associate with polyribosomes, which are units of mRNA translation, whereas the Top3 homologs from E. coli and yeast lack the association. The Top3β-polyribosome association requires TDRD3, which directly interacts with Top3β and is present in animals but not bacteria or yeast. We propose that RNA topoisomerases arose in the early RNA world, and that they are retained through all domains of DNA-based life, where they mediate mRNA translation as part of polyribosomes in animals.


Nucleic Acids Research | 2016

FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks

Florian Rohleder; Junji Huang; Yutong Xue; Jochen Kuper; Adam Round; Michael M. Seidman; Weidong Wang; Caroline Kisker

FANCM is a highly conserved DNA remodeling enzyme that promotes the activation of the Fanconi anemia DNA repair pathway and facilitates replication traverse of DNA interstrand crosslinks. However, how FANCM interacts with the replication machinery to promote traverse remains unclear. Here, we show that FANCM and its archaeal homolog Hef from Thermoplasma acidophilum interact with proliferating cell nuclear antigen (PCNA), an essential co-factor for DNA polymerases in both replication and repair. The interaction is mediated through a conserved PIP-box; and in human FANCM, it is strongly stimulated by replication stress. A FANCM variant carrying a mutation in the PIP-box is defective in promoting replication traverse of interstrand crosslinks and is also inefficient in promoting FANCD2 monoubiquitination, a key step of the Fanconi anemia pathway. Our data reveal a conserved interaction mode between FANCM and PCNA during replication stress, and suggest that this interaction is essential for FANCM to aid replication machines to traverse DNA interstrand crosslinks prior to post-replication repair.


Nucleic Acids Research | 2016

Topoisomerase 3β is the major topoisomerase for mRNAs and linked to neurodevelopment and mental dysfunction

Muzammil Ahmad; Weiping Shen; Wen Li; Yutong Xue; Sige Zou; Dongyi Xu; Weidong Wang

Abstract Human cells contain five topoisomerases in the nucleus and cytoplasm, but which one is the major topoisomerase for mRNAs is unclear. To date, Top3β is the only known topoisomerase that possesses RNA topoisomerase activity, binds mRNA translation machinery and interacts with an RNA-binding protein, FMRP, to promote synapse formation; and Top3β gene deletion has been linked to schizophrenia. Here, we show that Top3β is also the most abundant mRNA-binding topoisomerase in cells. Top3β, but not other topoisomerases, contains a distinctive RNA-binding domain; and deletion of this domain diminishes the amount of Top3β that associates with mRNAs, indicating that Top3β is specifically targeted to mRNAs by its RNA binding domain. Moreover, Top3β mutants lacking either its RNA-binding domain or catalytic residue fail to promote synapse formation, suggesting that Top3β requires both its mRNA-binding and catalytic activity to facilitate neurodevelopment. Notably, Top3β proteins bearing point mutations from schizophrenia and autism individuals are defective in association with FMRP; whereas one of the mutants is also deficient in binding mRNAs, catalyzing RNA topoisomerase reaction, and promoting synapse formation. Our data suggest that Top3β is the major topoisomerase for mRNAs, and requires both RNA binding and catalytic activity to promote neurodevelopment and prevent mental dysfunction.


Journal of the Acoustical Society of America | 2018

Fibrous Material Microstructure Design for Optimal Structural Damping

Yutong Xue; J. S. Bolton

It is shown here that properly designed fibrous media (e.g., glass or polymeric fibers) can be used to damp structural vibration as well as to absorb sound. The materials can then be multi-functional, reducing the number of elements required to achieve a specified level of noise and vibration performance. Past work demonstrated that layers of fibrous media placed on panels can damp the panel motion by removing energy from the nearfield acoustical motion generated by the panel vibration. The current study focused on designing the fibrous medium to ensure optimal vibration damping in a particular application. First, a method of calculating the response of a panel with an attached fibrous layer is recalled and updated to allow layers of limp or elastic porous media to be modeled. Example results will be presented, and then it will be shown that an optimal flow resistivity exists for a given frequency range and configuration of interest. Finally, based on a recently developed theory for the flow resistivity of fibrous media, the optimal flow resistivity identified in that way can be translated into a particular fiber size, given properties such as density of the fiber material and the desired superficial density.It is shown here that properly designed fibrous media (e.g., glass or polymeric fibers) can be used to damp structural vibration as well as to absorb sound. The materials can then be multi-functional, reducing the number of elements required to achieve a specified level of noise and vibration performance. Past work demonstrated that layers of fibrous media placed on panels can damp the panel motion by removing energy from the nearfield acoustical motion generated by the panel vibration. The current study focused on designing the fibrous medium to ensure optimal vibration damping in a particular application. First, a method of calculating the response of a panel with an attached fibrous layer is recalled and updated to allow layers of limp or elastic porous media to be modeled. Example results will be presented, and then it will be shown that an optimal flow resistivity exists for a given frequency range and configuration of interest. Finally, based on a recently developed theory for the flow resistivity o...

Collaboration


Dive into the Yutong Xue's collaboration.

Top Co-Authors

Avatar

Weidong Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Ling

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amom Ruhikanta Meetei

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael M. Seidman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sige Zou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Weiping Shen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hans Joenje

VU University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge