Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuxia Zou is active.

Publication


Featured researches published by Yuxia Zou.


BioMed Research International | 2014

Gonadal transcriptome analysis of male and female olive flounder (Paralichthys olivaceus).

Zhaofei Fan; Feng You; Lijuan Wang; Shenda Weng; Zhihao Wu; Jinwei Hu; Yuxia Zou; Xungang Tan; Peijun Zhang

Olive flounder (Paralichthys olivaceus) is an important commercially cultured marine flatfish in China, Korea, and Japan, of which female grows faster than male. In order to explore the molecular mechanism of flounder sex determination and development, we used RNA-seq technology to investigate transcriptomes of flounder gonads. This produced 22,253,217 and 19,777,841 qualified reads from ovary and testes, which were jointly assembled into 97,233 contigs. Among them, 23,223 contigs were mapped to known genes, of which 2,193 were predicted to be differentially expressed in ovary and 887 in testes. According to annotation information, several sex-related biological pathways including ovarian steroidogenesis and estrogen signaling pathways were firstly found in flounder. The dimorphic expression of overall sex-related genes provides further insights into sex determination and gonadal development. Our study also provides an archive for further studies of molecular mechanism of fish sex determination.


Development Genes and Evolution | 2015

A new pattern of primordial germ cell migration in olive flounder (Paralichthys olivaceus) identified using nanos3

Meijie Li; Xungang Tan; Shuang Jiao; Qian Wang; Zhihao Wu; Feng You; Yuxia Zou

The olive flounder (Paralichthys olivaceus) is an important cultured marine fish. However, little information is available on primordial germ cell (PGC) development and migration in this species; such information is vital for applications in artificial reproduction and for the preservation of genetic resources. Here, we sought to remedy this information deficit by isolating the germline-specific gene nanos3 and analyzing its expression in olive flounder. Sequencing analysis showed that olive flounder nanos3 contained a typical RNA-binding zinc finger domain. A phylogenetic analysis demonstrated that nanos3 of the olive flounder grouped with that of the barfin flounder (Verasper moseri). In the olive flounder, nanos3 was consistently expressed during embryogenesis. Whole-mount in situ hybridization showed that a new pattern of PGC migration was present in olive flounder, which combined elements of the PGC migration patterns of medaka, herring, and goby. In olive flounder, PGCs aligned along the lateral plate mesoderm in two loose, elongated lines at early embryogenesis, aggregated into a single loose cluster at mid-embryogenesis, then re-aligned into two tight clusters at late somitogenesis, and finally migrated to the genital ridge as two clusters. Furthermore, whole-mount in situ hybridization revealed that expression of stromal derived factor 1 (Sdf1) was important for guiding of PGC migration during somitogenesis. In particular, Sdf1 directed aggregation of PGCs into a single loose cluster from the two elongated lines during mid-embryogenesis. Additionally, PGCs in zebrafish were successfully visualized by injection of chimeric RNA containing the green fluorescent protein (GFP) and 3′ untranslated region of olive flounder nanos3. These findings provide new insights into PGC migration and development in olive flounder and will also facilitate germ cell manipulation in this species.


Marine Biotechnology | 2016

Characterization of Embryo Transcriptome of Gynogenetic Olive Flounder Paralichthys olivaceus

Zhaofei Fan; Zhihao Wu; Lijuan Wang; Yuxia Zou; Peijun Zhang; Feng You

Olive flounder Paralichthys olivaceus is an important commercially cultured marine flatfish in China, Korea, and Japan. Gynogenesis, via meiogynogenesis and mitogynogenesis, shows advantages in breeding and sex control, but the low survival rate, especially for mitogynogenesis, limits its application. In this study, we sequenced the embryo transcriptomes of gynogenetic haploid, meiogynogenetic diploid, mitogynogenetic diploid, and common diploid flounder and investigated their respective genetic characteristics by analyzing differentiated expressed genes. Compared with common diploid, the gynogenetic haploid showed significant downregulation in notch signaling and wingless-related integration site (Wnt) signaling pathways, which may be the source of haploid syndrome. In both meiogynogenesis and mitogynogenesis, several upregulated genes including complement C3, formin-2, and intelectin may be related to increased survival compared to the haploid. The downregulation of immune system and energy metabolism-related genes caused retarded development of gynogenetic diploids compared with the common diploid. These data provided new and important information for application of artificially induced gynogenesis to aquaculture.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2017

Significant association of cyp19a promoter methylation with environmental factors and gonadal differentiation in olive flounder Paralichthys olivaceus

Zhaofei Fan; Yuxia Zou; Shuang Jiao; Xungang Tan; Zhihao Wu; Dongdong Liang; Peijun Zhang; Feng You

The sex ratio of olive flounder Paralichthys olivaceus is sensitive to temperature or exogenous hormone exposures in the period of gonadal differentiation. Among sex-related genes, cyp19a, encoding cytochrome P450 aromatase, exhibits significant sex-dimorphic expression pattern and plays an important role in fish gonadal differentiation and development. The present study investigated the expression levels and promoter methylation dynamics of cyp19a and its regulators (nr5a2 and nr0b1), and sex-steroid hormone levels during flounder gonadal differentiation under the treatments of high temperature and estradiol-17β (E2). The results showed that levels of flounder cyp19a expression and estradiol-17β were repressed by high temperature treatment during this period. The up-regulation of nr5a2 by E2 treatment may be related to the all-female formation, and up-regulation of nr0b1 by high temperature treatment may be associated with masculinization. Co-transfection assay indicated that nr5a2 and nr0b1 were antagonist regulators of cyp19a. Furthermore, cyp19a promoter exhibited significant demethylation phenomenon at early stage of ovarian differentiation. While, high temperature could repress the demethylation process, resulting in hypermethylation maintenance in cyp19a promoter. The hypermethylation promoter was able to suppress cyp19a expression by blocking the nr5a2-mediated transactivation activity in vitro. The DNA methylation of epigenetic modification in cyp19a promoter might be the vital way linking environmental factors and gonadal differentiation in flounder.


Journal of Fish Biology | 2015

Establishment and characterization of a fish‐cell line from the brain of Japanese flounder Paralichthys olivaceus

Yong-Tang Zheng; Limin Peng; Feng You; Yuxia Zou; Peijun Zhang; Songlin Chen

A new brain-cell line derived from Japanese flounder Paralichthys olivaceus (POBC) was established. POBC was subcultured for 67 passages over the course of 420 days. The cultured cells were primarily epithelioid-like. Chromosome analysis revealed the cell line to possess the normal P. olivaceus diploid karyotype of 2n = 48t (telocentric chromosomes). The cells exhibited the astrocyte marker glial fibrillary acidic protein by immunocytochemistry, and significant fluorescent signals were observed when the cells were transfected with green fluorescent protein reporter plasmid. The established POBC would be ideal material for the study of function of fish ependyma, the central neuroendocrine system and endocrine disruptors in the marine environment.


Fish Physiology and Biochemistry | 2016

Molecular cloning and sexually dimorphic expression of wnt4 in olive flounder (Paralichthys olivaceus)

Shenda Weng; Feng You; Zhaofei Fan; Lijuan Wang; Zhihao Wu; Yuxia Zou

AbstractsWNT4 (wingless-type MMTV integration site family, member 4) is regarded as a key regulator of gonad differentiation in mammalians. However, the potential role of wnt4 in teleosts during gonad differentiation and development is still unclear. The full-length cDNA sequence of wnt4 in olive flounder (Paralichthys olivaceus) was obtained using RACE (rapid amplification of cDNA ends) technique. The wnt4 ORF contains 1059 nucleotides, encoding a protein with a signal peptide domain and a wnt family domain. Expression in tissues of adult flounders was analyzed by real-time RT-PCR. The results showed that wnt4 was widely expressed in multiple tissues of flounders, and the expression level was significantly higher in ovary than in testis. Then wnt4 expression pattern was investigated during gonadal differentiation period and at gonadal development stages (I–V). The results showed the expression levels were significantly higher in testis than in ovary during gonadal differentiation. Notably, wnt4 expression had a very significant increase before testis differentiation. At gonad different developmental stages, there was no expression signal at stage I or stage II, and the expression of wnt4 was much stronger in ovary than in testis at stage III and stage IV, followed by a faint expression in stage V in both sexes. Our results imply that cloned wnt4 could be wnt4a. It is a sex-related gene and its expression pattern in gonadal differentiation period of flounder is different from that in mammalians or other teleosts. Flounder wnt4 might play more important role in testis than in ovary during gonadal differentiation.


Chinese Journal of Oceanology and Limnology | 2016

Establishment and characterization of a testicular Sertoli cell line from olive flounder Paralichthys olivaceus

Limin Peng; Yuan Zheng; Feng You; Zhihao Wu; Yuxia Zou; Peijun Zhang

The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis. A new Sertoli cell line (POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the olive flounder Paralichthys olivaceus and sub-cultured for 48 passages. Analysis of the mtDNA COI gene partial sequence confirmed that the cell line was from P. olivaceus. Cells were optimally maintained at 25°C in DMEM/F12 medium supplemented with fetal bovine serum, basic fibroblast growth factor, and epidermal growth factor. The growth curve of POSC showed a typical “S” shape. Chromosome analysis revealed that the cell line possessed the normal P. olivaceus diploid karyotype of 2n=48t. POSC expressed dmrt1 but not vasa, which was detected using RT-PCR and sequencing. Immunocytochemistry revealed that the cells exhibited the testicular Sertoli cell marker FasL. Therefore, POSC appeared to consist of testicular Sertoli cells. Bright fluorescent signals were observed after the cells were transfected with pEGFP-N3 plasmid, with the transfection efficiency reaching 10%. This research not only offers an ideal model for further gene expression and regulation studies on P. olivaceus, but also serves as valuable material in studying fish spermatogenesis, Sertoli cell-germ cell interactions, and the mechanism of growth and development of testis.


Animal Biology | 2015

Sexually dimorphic gene expression patterns during gonadal differentiation in olive flounder, Paralichthys olivaceus

Aiyun Wen; Feng You; Peng Sun; Jun Li; Dongdong Xu; Zhihao Wu; D. Y. Ma; Yuxia Zou; Xungang Tan; Zhaofei Fan; Peijun Zhang

The present study aims to elucidate the different expression patterns and possible roles of Doublesex and Mab-3-related transcription factor 1 (dmrt1), dmrt4, SRY-related transcription factor 9 (sox9) and cytochrome P450 aromatase 19a (cyp19a) during gonadal differentiation in olive flounder, Paralichthys olivaceus. We first analyzed the gene expression patterns in tissues using RT-PCR, which indicated dmrt1, sox9 and cyp19a were sex-related genes with sexual dimorphic expression. The quantitative expression changes of these three genes together with dmrt4 during gonadal differentiation were further examined using real-time RT-PCR. The results showed that dmrt1 was scarcely expressed in the primitive gonad and during following periods of gonadal differentiation. Its expression increased rapidly in the differentiating testis. Dmrt4 was strongly expressed in primitive gonads and much less expressed during following periods of gonadal differentiation. Its expression became strong in differentiating testes. While sox9 was highly expressed in the primitive gonad, it was expressed with fluctuations during following periods of gonadal differentiation. Cyp19a started expressing in primitive gonads, and its expression quantity fluctuated during latter periods of gonadal differentiation, but was strongly expressed in the early stage of differentiating ovaries. Results of in situ hybridization showed that dmrt4 and sox9 transcripts were both mainly localized in spermatocytes and our results suggested these four sex-related genes might be involved in gonadal differentiation through their synergistic effects in flounder.


Gene | 2019

Characterization and expression of androgen receptors in olive flounder

Yuxia Zou; Limin Peng; Shenda Weng; Dongdong Liang; Zhaofei Fan; Zhihao Wu; Xungang Tan; Shuang Jiao; Feng You

Androgens are critical hormones that regulate sex differentiation, sexual maturation, and spermatogenesis in vertebrates, which is mainly mediated by androgen receptors (ARs). Reports on transcript variants of ar (AR encoding gene) in human are almost always associated with cancers and androgen insensitivity syndrome. However, the knowledge of ar variants in teleosts is scarce. In this study, arβ and two transcript variants of arα (arα1 and arα2) in olive flounder (Paralichthys olivaceus) were cloned and analyzed. Their expression patterns were investigated in 16 adult female and male tissues by RT-PCR, respectively. arα1 was expressed in the majority of tissues excluding male liver, medulla oblongata and female cerebellum, with higher levels in male gonad, kidney, head kidney, intestine, stomach, spleen, heart and gill than in female. arα2 had similar expression patterns as arα1, with lower levels in general. arβ was also widely expressed in various tissues excluding male spleen, female spleen and gill, with higher levels in male gonad, kidney, head kidney, intestine and lower levels in hypothalamus than in female. Compared with arβ, much lower expression levels of arα1 and arα2 were detected in different brain areas. The real-time quantitative PCR (qPCR) results showed that the total arα expression level was relatively higher during olive flounder gonadal differentiation and before the onset of testis differentiation, whereas arβ was expressed significantly higher during male gonadal differentiation period than female gonadal differentiation period. The in vitro transient transfection assays showed that ARα1, ARα2 and ARβ could all suppress the activity of cyp19a (p450arom aromatase gene) promoter, and the inhibitory effect of ARα1 was dose dependent. Our results imply that arα1, arα2 and arβ are sex-related genes and they might play important roles in gonadal differentiation in flounder.


International Journal of Molecular Sciences | 2018

Characteristics of Cyp11a during Gonad Differentiation of the Olive Flounder Paralichthys olivaceus

Dongdong Liang; Zhaofei Fan; Yuxia Zou; Xungang Tan; Zhihao Wu; Shuang Jiao; Jun Li; Peijun Zhang; Feng You

The P450 side-chain cleavage enzyme, P450scc (Cyp11a) catalyzes the first enzymatic step for the synthesis of all steroid hormones in fish. To study its roles in gonads of the olive flounder Paralichthys olivaceus, an important maricultured fish species, we isolated the cyp11a genomic DNA sequence of 1396 bp, which consists of 5 exons and 4 introns. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) results indicated that the flounder cyp11a was exclusively expressed in gonad and head kidney tissues. Its expression level in the testis was higher than that in the ovary. According to the in situ hybridization patterns, cyp11a was mainly expressed in the Leydig cells of the testis, and the thecal cells of the ovary. Immunofluorescence analysis showed that Cyp11a was located in the cytoplasm of the cultured flounder testis cells. Further quantitative real-time PCR results presented the cyp11a differential expression patterns during gonad differentiation. Among different sampling points of the 17β-estradiol (E2, 5 ppm) treatment group, cyp11a expression levels were relatively high in the differentiating ovary (30 and 40 mm total length, TL), and then significantly decreased in the differentiated ovary (80, 100 and 120 mm TL, p < 0.05). The pregnenolone level also dropped in the differentiated ovary. In the high temperature treatment group (HT group, 28 ± 0.5 °C), the cyp11a expression level fluctuated remarkably in the differentiating testis (60 mm TL), and then decreased in the differentiated testis (80, 100 mm TL, p < 0.05). In the testosterone (T, 5 ppm) treatment group, the cyp11a was expressed highly in undifferentiated gonads and the differentiating testis, and then dropped in the differentiated testis. Moreover, the levels of cholesterol and pregnenolone of the differentiating testis in the HT and T groups increased. The expression level of cyp11a was significantly down-regulated after the cultured flounder testis cells were treated with 75 and 150 μM cyclic adenosine monophosphate (cAMP), respectively (p < 0.05), and significantly up-regulated after treatment with 300 μM cAMP (p < 0.05). Both nuclear receptors NR5a2 and NR0b1 could significantly up-regulate the cyp11a gene expression in a dosage dependent way in the testis cells detected by cell transfection analysis (p < 0.05). The above data provides evidence that cyp11a would be involved in the flounder gonad differentiation and development.

Collaboration


Dive into the Yuxia Zou's collaboration.

Top Co-Authors

Avatar

Feng You

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhihao Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Peijun Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xungang Tan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhaofei Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shenda Weng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuang Jiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dongdong Liang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lijuan Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge