Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuyang Kuang is active.

Publication


Featured researches published by Yuyang Kuang.


Biomaterials | 2009

Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer

Weilun Ke; Kun Shao; Rongqin Huang; Liang Han; Yang Liu; Jianfeng Li; Yuyang Kuang; Liya Ye; Jinning Lou; Chen Jiang

Angiopep targeting to the low-density lipoprotein receptor-related protein-1 (LRP1) was identified to exhibit high transcytosis capacity and parenchymal accumulation. In this study, it was exploited as a ligand for effective brain-targeting gene delivery. Polyamidoamine dendrimers (PAMAM) were modified with angiopep through bifunctional PEG, then complexed with DNA, yielding PAMAM-PEG-Angiopep/DNA nanoparticles (NPs). The angiopep-modified NPs were observed to be internalized by brain capillary endothelial cells (BCECs) through a clathrin- and caveolae-mediated energy-depending endocytosis, also partly through marcopinocytosis. Also, the cellular uptake of the angiopep-modified NPs were competed by angiopep-2, receptor-associated protein (RAP) and lactoferrin, indicating that LRP1-mediated endocytosis may be the main mechanism of cellular internalization of angiopep-modified NPs. And the angiopep-modified NPs showed higher efficiency in crossing blood-brain barrier (BBB) than unmodified NPs in an in vitro BBB model, and accumulated in brain more in vivo. The angiopep-modified NPs also showed higher efficiency in gene expressing in brain than the unmodified NPs. In conclusion, PAMAM-PEG-Angiopep showed great potential to be applied in designing brain-targeting drug delivery system.


Biomaterials | 2012

Gene and doxorubicin co-delivery system for targeting therapy of glioma

Shuhuan Liu; Yubo Guo; Rongqin Huang; Jianfeng Li; Shixian Huang; Yuyang Kuang; Liang Han; Chen Jiang

The combination of gene therapy and chemotherapy is a promising treatment strategy for brain gliomas. In this paper, we designed a co-delivery system (DGDPT/pORF-hTRAIL) loading chemotherapeutic drug doxorubicin and gene agent pORF-hTRAIL, and with functions of pH-trigger and cancer targeting. Peptide HAIYPRH (T7), a transferrin receptor-specific peptide, was chosen as the ligand to target the co-delivery system to the tumor cells expressing transferrin receptors. T7-modified co-delivery system showed higher efficiency in cellular uptake and gene expression than unmodified co-delivery system in U87 MG cells, and accumulated in tumor more efficiently in vivo. DOX was covalently conjugated to carrier though pH-trigged hydrazone bond. In vitro incubation of the conjugates in buffers led to a fast DOX release at pH 5.0 (intracellular environment) while at pH 7.4 (blood) the conjugates are relatively stable. The combination treatment resulted in a synergistic growth inhibition (combination index, CI < 1) in U87 MG cells. The synergism effect of DGDPT/pORF-hTRAIL was verified in vitro and in vivo. In vivo anti-glioma efficacy study confirmed that DGDPT/pORF-hTRAIL displayed anti-glioma activity but was less toxic.


International Journal of Pharmaceutics | 2013

T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting

Yuyang Kuang; Sai An; Yubo Guo; Shixian Huang; Kun Shao; Yang Liu; Jianfeng Li; Haojun Ma; Chen Jiang

Among all the malignant brain tumors, glioma is the deadliest and most common form with poor prognosis. Gene therapy is regarded as a promising way to halt the progress of the disease or even cure the tumor and RNA interference (RNAi) stands out. However, the existence of the blood-brain barrier (BBB) and blood tumor barrier (BTB) limits the delivery of these therapeutic genes. In this work, the delivery system targeting to the transferrin (Tf) receptor highly expressed on both BBB and glioma was successfully synthesized and would not compete with endogenous Tf. U87 cells stably express luciferase were employed here to simulate tumor and the RNAi experiments in vitro and in vivo validated that the gene silencing activity was 2.17-fold higher with the targeting ligand modification. The dual-targeting gene delivery system exhibits a series of advantages, such as high efficiency, low toxicity, stability and high transaction efficiency, which may provide new opportunities in RNAi therapeutics and nanomedicine of brain tumors.


Biomaterials | 2011

Chlorotoxin-modified macromolecular contrast agent for MRI tumor diagnosis

Rongqin Huang; Liang Han; Jianfeng Li; Shuhuan Liu; Kun Shao; Yuyang Kuang; Xing Hu; Wang X; Hao Lei; Chen Jiang

Clinical diagnosis of cancers using magnetic resonance imaging (MRI) is highly dependent on contrast agents, especially for brain tumors which contain blood-brain barrier (BBB) at the early stage. However, currently mostly used low molecular weight contrast agents such as Gd-DTPA suffer from rapid renal clearance, non-specificity, and low contrast efficiency. The aim of this paper is to investigate the potential of a macromolecular MRI contrast agent based on dendrigraft poly-l-lysines (DGLs), using chlorotoxin (CTX) as a tumor-specific ligand. The contrast agent using CTX-modified conjugate as the main scaffold and Gd-DTPA as the payload was successfully synthesized. The results of fluorescent microscopy showed that the modification of CTX could markedly enhance the cellular uptake in C6 glioma and liver tumor cell lines, but not in normal cell line. Significantly increased accumulation of CTX-modified conjugate within glioma and liver tumor was further demonstrated in tumor-bearing nude mice using in vivo imaging system. The MRI results showed that the signal enhancement of mice treated with CTX-modified contrast reached peak level at 5 min for both glioma and liver tumor, 144.97% ± 19.54% and 158.69% ± 12.41%, respectively, significantly higher than that of unmodified counterpart and commercial control. And most importantly, the signal enhancement of CTX-modified contrast agent maintained much longer compared to that of controls, which might be useful for more exact diagnosis for tumors. CTX-modified dendrimer-based conjugate might be applied as an efficient MRI contrast agent for targeted and accurate tumor diagnosis. This finding is especially important for tumors such as brain glioma which is known hard to be diagnosed due to the presence of BBB.


Biomaterials | 2013

Choline transporter-targeting and co-delivery system for glioma therapy.

Jianfeng Li; Yubo Guo; Yuyang Kuang; Sai An; Haojun Ma; Chen Jiang

Combination of gene therapy and chemotherapy is a promising approach for glioma therapy. In this study, a co-delivery system of plasmid encoding human tumor necrosis factor-related apoptosis-inducing ligand (pORF-hTRAIL, Trail) and doxorubicin (DOX) has been simply constructed in two steps. Firstly, DOX was intercalated into Trail to form a stable complex. Secondly, DOX-Trail complex was condensed by Dendrigraft poly-L-lysine (DGL) to form a nanoscaled co-delivery system. Choline transporters are both expressed on blood-brain barrier (BBB) and glioma, Herein, a choline derivate with high choline transporter affinity was chosen as BBB and glioma dual targeting ligand. Choline-derivate modified co-delivery system showed higher cellular uptake efficiency and cytotoxicity than unmodified co-delivery system in U87 MG cells. In comparison with single medication or unmodified delivery system, Choline-derivate modified co-delivery system induced more apoptosis both in vitro and in vivo. The therapeutic efficacy on U87 MG bearing xenografts further confirmed the predominance of this dual targeting and co-delivery system.


Biomaterials | 2016

Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer's disease mice

Yang Liu; Sai An; Jianfeng Li; Yuyang Kuang; Xi He; Yubo Guo; Haojun Ma; Yu Zhang; Bin Ji; Chen Jiang

Multifunctional nanocarriers are increasingly promising for disease treatment aimed to regulate multiple pathological dysfunctions and overcome barriers in drug delivery. Here we develop a multifunctional nanocarrier for Alzheimers disease (AD) treatment by achieving therapeutic gene and peptide co-delivery to brain based on PEGylated dendrigraft poly-l-lysines (DGLs) via systemic administration. The dendritic amine-rich structure of DGLs provides plenty reaction sites and positive charge for drug loading. Successful co-delivery of drugs overcoming the blood-brain barrier by brain-targeted ligand modification was demonstrated both in vitro and in vivo. The pharmacodynamics study of the system following multiple-dosing treatment was verified in transgenic AD mice. Down-regulation of the key enzyme in amyloid-β formation was achieved by delivering non-coding RNA plasmid. Simultaneous delivery of the therapeutic peptide into brain leads to reduction of neurofibrillary tangles. Meanwhile, memory loss rescue in AD mice was also observed. Taken together, the multifunctional nanocarrier provides an excellent drug co-delivery platform for brain diseases.


Advanced Healthcare Materials | 2013

pH-controlled delivery of nanoparticles into tumor cells.

Liang Han; Haojun Ma; Yubo Guo; Yuyang Kuang; Xi He; Chen Jiang

Nanoparticles target tumor cells by pH-controlled means. Nanoparticles carry three synergistic delivery functions: 1) tumor tissue targeting by the EPR effect; 2) tumor cell targeting by pHLIP-mediated membrane-localization; and 3) tumor cell uptake by adsorptive-mediated endocytosis.


PLOS ONE | 2013

Targeting Caspase-3 as Dual Therapeutic Benefits by RNAi Facilitating Brain-Targeted Nanoparticles in a Rat Model of Parkinson’s Disease

Yang Liu; Yubo Guo; Sai An; Yuyang Kuang; Xi He; Haojun Ma; Jianfeng Li; Jing Lv; Ning Zhang; Chen Jiang

The activation of caspase-3 is an important hallmark in Parkinson’s disease. It could induce neuron death by apoptosis and microglia activation by inflammation. As a result, inhibition the activation of caspase-3 would exert synergistic dual effect in brain in order to prevent the progress of Parkinson’s disease. Silencing caspase-3 genes by RNA interference could inhibit the activation of caspase-3. We developed a brain-targeted gene delivery system based on non-viral gene vector, dendrigraft poly-L-lysines. A rabies virus glycoprotein peptide with 29 amino-acid linked to dendrigraft poly-L-lysines could render gene vectors the ability to get across the blood brain barrier by specific receptor mediated transcytosis. The resultant brain-targeted vector was complexed with caspase-3 short hairpin RNA coding plasmid DNA, yielding nanoparticles. In vivo imaging analysis indicated the targeted nanoparticles could accumulate in brain more efficiently than non-targeted ones. A multiple dosing regimen by weekly intravenous administration of the nanoparticles could reduce activated casapse-3 levels, significantly improve locomotor activity and rescue dopaminergic neuronal loss and in Parkinson’s disease rats’ brain. These results indicated the rabies virus glycoprotein peptide modified brain-targeted nanoparticles were promising gene delivery system for RNA interference to achieve anti-apoptotic and anti-inflammation synergistic therapeutic effects by down-regulation the expression and activation of caspase-3.


Small | 2013

Acid active receptor-specific peptide ligand for in vivo tumor-targeted delivery.

Liang Han; Yubo Guo; Haojun Ma; Xi He; Yuyang Kuang; Ning Zhang; Ed Lim; Wenjiang Zhou; Chen Jiang

Targeting therapy of tumors in their early stages is crucial to increase the survival rate of cancer patients. Currently most drug-delivery systems target the neoplasia through the tumor-associated receptors overexpressed on the cancer cell membrane. However, the expression of these receptors on normal cells and tissues is inevitable, which leads to unwanted accumulation and side effects. Characteristics of the tumor microenvironment, such as acidosis, are pervasive in almost all solid tumors and can be easily accessed. It is shown that the different extracellular pH value can be used to activate/inactivate the receptor-mediated endocytosis on tumor/normal cells. This idea is implemented by conjugating a shielding molecule at the terminus of a receptor-specific ligand via a pH-sensitive hydrazone bond. The acid-activated detachment of the shielding molecule and enhanced tumor/background accumulation ratio are demonstrated. These results suggest that acid active receptor-specific peptide ligand-modified tumor-targeting delivery systems have potential use in the treatment of tumors.


Bioconjugate Chemistry | 2015

Linear-dendritic copolymer composed of polyethylene glycol and all-trans-retinoic acid as drug delivery platform for paclitaxel against breast cancer.

Jianfeng Li; Xutao Jiang; Yubo Guo; Sai An; Yuyang Kuang; Haojun Ma; Xi He; Chen Jiang

A new linear-dendritic copolymer composed of poly(ethylene glycol) (PEG) and all-trans-retinoic acid (ATRA) was synthesized as the anticancer drug delivery platform (PEG-G3-RA8). It can self-assemble into core-shell micelles with a low critical micelle concentration (CMC) at 3.48 mg/L. Paclitaxel (PTX) was encapsulated into PEG-G3-RA8 to form PEG-G3-RA8/PTX micelles for breast cancer treatment. The optimized formulation had high drug loading efficacy (20% w/w of drug copolymer ratio), nanosized diameter (27.6 nm), and narrow distribution (PDI = 0.103). Compared with Taxol, PEG-G3-RA8/PTX remained highly stable in the serum-containing cell medium and exhibited 4-fold higher cellular uptake. Besides, near-infrared fluorescence (NIR) optical imaging results indicated that fluorescent probe loaded micelle had a preferential accumulation in breast tumors. Pharmacokinetics and biodistribution studies (10 mg/kg) showed the area under the plasma concentration-time curve (AUC0-∞) and mean residence time (MRT0-∞) for PEG-G3-RA8/PTX and Taxol were 12.006 ± 0.605 mg/L h, 2.264 ± 0.041 h and 15.966 ± 1.614 mg/L h, 1.726 ± 0.097 h, respectively. The tumor accumulation of PEG-G3-RA8/PTX group was 1.89-fold higher than that of Taxol group 24 h postinjection. With the advantages like efficient cellular uptake and preferential tumor accumulation, PEG-G3-RA8/PTX showed superior therapeutic efficacy on MCF-7 tumor bearing mice compared to Taxol.

Collaboration


Dive into the Yuyang Kuang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge