Yves Grohens
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yves Grohens.
Carbohydrate Polymers | 2013
Neethu Ninan; Muthunarayanan Muthiah; In-Kyu Park; Anne Elain; Sabu Thomas; Yves Grohens
Highly porous three-dimensional scaffolds made of biopolymers are of great interest in tissue engineering applications. A novel scaffold composed of pectin, carboxymethyl cellulose (CMC) and microfibrillated cellulose (MFC) were synthesised using lyophilisation technique. The optimised scaffold with 0.1% MFC, C(0.1%), showed highest compression modulus (~3.987 MPa) and glass transition temperature (~103 °C). The pore size for the control scaffold, C(0%), was in the range of 30-300 μm while it was significantly reduced to 10-250 μm in case of C(0.1%). Using micro computed tomography, the porosity of C(0.1%) was estimated to be 88%. C(0.1%) showed excellent thermal stability and lower degradation rate compared to C(0%). The prepared samples were also characterised using XRD and FTIR. C(0.1%) showed controlled water uptake ability and in vitro degradation in PBS. It exhibited highest cell viability on NIH3T3 fibroblast cell line. These results suggest that these biocompatible composite scaffolds can be used for tissue engineering applications.
Journal of Materials Chemistry C | 2014
Deepalekshmi Ponnamma; Kishor Kumar Sadasivuni; Yves Grohens; Qipeng Guo; Sabu Thomas
The current study focuses on giving a basic understanding of tubular graphene sheets or carbon nanotubes (CNTs) and points towards their role in fabricating elastomer composites. Since the properties and the performance of CNT reinforced elastomer composites predominantly depend on the rate of dispersion of fillers in the matrix, the physical and chemical interaction of polymer chains with the nanotubes, crosslinking chemistry of rubbers and the orientation of the tubes within the matrix, here, a thorough study of these topics is carried out. For this, various techniques of composite manufacturing such as pulverization, heterocoagulation, freeze drying, etc. are discussed by emphasizing the dispersion and alignment of CNTs in elastomers. The importance of the functionalization technique as well as the confinement effect of nanotubes in elastomer media is derived. In a word, this article is aimed exclusively at addressing the prevailing problems related to the CNT dispersion in various rubber matrices, the solutions to produce advanced high-performance elastomeric composites and various fields of applications of such composites, especially electronics. Special attention has also been given to the non-linear viscoelasticity effects of elastomers such as the Payne effect, Mullins effect and hysteresis in regulating the composite properties. Moreover, the current challenges and opportunities for efficiently translating the extraordinary electrical properties of CNTs to rubbery matrices are also dealt with.
Journal of Colloid and Interface Science | 2003
F. Belaroui; M.P Hirn; Yves Grohens; P. Marie; Y. Holl
Monodisperse core-shell latices were synthesized, differing in the acrylic acid (AA) content in the particle shell (1 or 4 wt%) and the Tg of the acrylic core (around -40 or 10 degrees C). In a first step, the drying mechanisms of the dialyzed latices were studied by confocal Raman spectroscopy. It was shown that, besides some unexpected features (briefly described in the article), drying occurred in a rather classical way, i.e., simultaneously from top to bottom and from edge to center. Then, the distributions of sulfate ion (SO4) (from sodium sulfate) and sodium dodecyl sulfate (SDS) in the dry latex films were established by confocal Raman spectroscopy and attenuated total reflectance (ATR). The two techniques were complementary. SO4 and SDS distributions were quite different, although presenting some common characteristics. In both cases, repartition of the low-molecular-weight species in the film was even less homogeneous when the AA content was lower and the particle core softer. However, SO4 showed enrichment at the film-substrate interface and depletion at the air side, whereas SDS showed concentration maxima at both interfaces. Interpretations stress the importance of desorption from the particle-water interface, transport by water, size effects, and diffusion.
Langmuir | 2008
Samer Al Akhrass; Roxana-Viorela Ostaci; Yves Grohens; Eric Drockenmuller; Günter Reiter
We present dewetting experiments on thin polymer films as a function of cross-linking density. Covalent cross-links were obtained in the glassy state on the basis of azide photochemistry of linear random copolymers of styrene and p-(azidomethyl)styrene, i.e., 106 and 2500 kg/mol with 7% and 1% azide functionality among the polymer backbone, respectively. Upon ultraviolet radiation, azides generate highly unstable nitrene radicals which react with the surrounding polymer backbone, yielding covalent cross-links. We determined the probability for film rupture, defined by the number of holes formed per unit area, and the relaxation time (tauw) of residual stresses which resulted from the film preparation process. For the lower molar mass polymer studied and for azide conversion rates lower than 60%, only partial cross-linking occurred. The effective molar mass of the polymer increased, and consequently, an increase in tauw was observed. The increase in tauw was accompanied by a decrease in hole density, indicating that the still present residual stresses in the films were not able anymore to rupture the films at the high probability of un-cross-linked polymers. For high conversion (>60%), cross-linking was significant enough to lead to the formation of a three-dimensional rubbery network which, in turn, generated an elastic force that counteracted the driving forces. This elastic force eventually inhibited dewetting and the relaxation of residual stresses. Thus, at high conversions, the relaxation time tauw grew exponentially and the number of holes tended toward zero. For the higher molar mass polymer, no changes in the relaxation time tauw were observed for low conversion (<30%). However, at a higher conversion rate, tauw increased drastically, suggesting an almost infinitely long relaxation time at 100% conversion. Consequently, to successfully stabilize thin polymer films by cross-linking, it is preferable to use long polymer chains.
Langmuir | 2014
Guillaume Vignaud; Mohamed Souheib Chebil; J. K. Bal; Nicolas Delorme; Thomas Beuvier; Yves Grohens; Alain Gibaud
Ellipsometry and X-ray reflectivity were used to characterize the mass density and the glass transition temperature of supported polystyrene (PS) thin films as a function of their thickness. By measuring the critical wave vector (qc) on the plateau of total external reflection, we evidence that PS films get denser in a confined state when the film thickness is below 50 nm. Refractive indices (n) and electron density profiles measurements confirm this statement. The density of a 6 nm (0.4 gyration radius, Rg) thick film is 30% greater than that of a 150 nm (10Rg) film. A depression of 25 °C in glass transition temperature (Tg) was revealed as the film thickness is reduced. In the context of the free volume theory, this result seems to be in apparent contradiction with the fact that thinner films are denser. However, as the thermal expansion of thinner films is found to be greater than the one of thicker films, the increase in free volume is larger for thin films when temperature is raised. Therefore, the free volume reaches a critical value at a lower Tg for thinner films. This critical value corresponds to the onset of large cooperative movements of polymer chains. The link between the densification of ultrathin films and the drop in their Tg is thus reconciled. We finally show that at their respective Tg(h) all films exhibit a critical mass density of about 1.05 g/cm(3) whatever their thickness. The thickness dependent thermal expansion related to the free volume is consequently a key factor to understand the drop in the Tg of ultrathin films.
Colloids and Surfaces B: Biointerfaces | 2014
Neethu Ninan; Muthunarayanan Muthiah; Nur Aliza B. T. Yahaya; In-Kyu Park; Anne Elain; Tin Wui Wong; Sabu Thomas; Yves Grohens
In this article, gelatin/copper activated faujasites (CAF) composite scaffolds were fabricated by lyophilisation technique for promoting partial thickness wound healing. The optimised scaffold with 0.5% (w/w) of CAF, G (0.5%), demonstrated pore size in the range of 10-350 μm. Agar disc diffusion tests verified the antibacterial role of G (0.5%) and further supported that bacterial lysis was due to copper released from the core of CAF embedded in the gelatin matrix. The change in morphology of bacteria as a function of CAF content in gelatin scaffold was studied using SEM analysis. The confocal images revealed the increase in mortality rate of bacteria with increase in concentration of incorporated CAF in gelatin matrix. Proficient oxygen supply to needy cells is a continuing hurdle faced by tissue engineering scaffolds. The dissolved oxygen measurements revealed that CAF embedded in the scaffold were capable of increasing oxygen supply and thereby promote cell proliferation. Also, G (0.5%) exhibited highest cell viability on NIH 3T3 fibroblast cells which was mainly attributed to the highly porous architecture and its ability to enhance oxygen supply to cells. In vivo studies conducted on Sprague Dawley rats revealed the ability of G (0.5%) to promote skin regeneration in 20 days. Thus, the obtained data suggest that G (0.5%) is an ideal candidate for wound healing applications.
ACS Applied Materials & Interfaces | 2013
Neethu Ninan; Muthunarayanan Muthiah; In-Kyu Park; Anne Elain; Tin Wui Wong; Sabu Thomas; Yves Grohens
Exploring the possibility of using inorganic faujasites in tissue engineering scaffolds is a prospective approach in regenerative medicine. Novel gelatin/hyaluronic acid (HA)/faujasite porous scaffolds with low surface energy were fabricated by lyophilization. The pore size of gelatin/HA scaffold was 50-2000 μm, whereas it was greatly reduced to 10-250 μm after incorporation of 2.4% (w/w) of faujasites in polymer matrix, GH(2.4%). Micro computed tomography analysis showed that the porosity of GH(2.4%) was 90.6%. The summative effect was ideal for growth of dermal fibroblasts and cellular attachment. XRD analysis revealed that the embedded faujasites maintained their crystallinity in the polymer matrix even though they interacted with the polymers as indicated by FT-IR analysis. Coupling with effective reinforcement of faujasites, GH(2.4%) demonstrated compression modulus of 929 ± 7 Pa and glass transition temperature of 31 ± 0.05 °C. It exhibited controlled swelling and degradation, allowing sufficient space for tissue regrowth. The latter is further supported by capability of faujasites to provide efficient oxygen supply to fibroblast cells. GH(2.4%) showed a cell viability of 91 ± 8% on NIH 3T3 fibroblast cell lines. The in vivo studies on Sprague-Dawley rats revealed its ability to enhance wound healing by accelerating re-epithelization and collagen deposition. These findings indicated its potential as excellent wound dressing material.
Carbohydrate Polymers | 2016
Bastien Seantier; Dounia Bendahou; Abdelkader Bendahou; Yves Grohens; Hamid Kaddami
Bio-composite aerogels based on bleached cellulose fibers (BCF) and cellulose nanoparticles having various morphological and physico-chemical characteristics are prepared by a freeze-drying technique and characterized. The various composite aerogels obtained were compared to a BCF aerogel used as the reference. Severe changes in the material morphology were observed by SEM and AFM due to a variation of the cellulose nanoparticle properties such as the aspect ratio, the crystalline index and the surface charge density. BCF fibers form a 3D network and they are surrounded by the cellulose nanoparticle thin films inducing a significant reduction of the size of the pores in comparison with a neat BCF based aerogel. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, a decrease of the thermal conductivities is observed from 28mWm(-1)K(-1) (BCF aerogel) to 23mWm(-1)K(-1) (bio-composite aerogel), which is below the air conductivity (25mWm(-1)K(-1)). This improvement of the insulation properties for composite materials is more pronounced for aerogels based on cellulose nanoparticles having a low crystalline index and high surface charge (NFC-2h). The significant improvement of their insulation properties allows the bio-composite aerogels to enter the super-insulating materials family. The characteristics of cellulose nanoparticles also influence the mechanical properties of the bio-composite aerogels. A significant improvement of the mechanical properties under compression is obtained by self-organization, yielding a multi-scale architecture of the cellulose nanoparticles in the bio-composite aerogels. In this case, the mechanical property is more dependent on the morphology of the composite aerogel rather than the intrinsic characteristics of the cellulose nanoparticles.
ACS Nano | 2015
J. K. Bal; Thomas Beuvier; Aparna Beena Unni; Elvia Anabela Chavez Panduro; Guillaume Vignaud; Nicolas Delorme; Mohamed Souheib Chebil; Yves Grohens; Alain Gibaud
In polymer physics, the dewetting of spin-coated polystyrene ultrathin films on silicon remains mysterious. By adopting a simple top-down method based on good solvent rinsing, we are able to prepare flat polystyrene films with a controlled thickness ranging from 1.3 to 7.0 nm. Their stability was scrutinized after a classical annealing procedure above the glass transition temperature. Films were found to be stable on oxide-free silicon irrespective of film thickness, while they were unstable (<2.9 nm) and metastable (>2.9 nm) on 2 nm oxide-covered silicon substrates. The Lifshitz-van der Waals intermolecular theory that predicts the domains of stability as a function of the film thickness and of the substrate nature is now fully reconciled with our experimental observations. We surmise that this reconciliation is due to the good solvent rinsing procedure that removes the residual stress and/or the density variation of the polystyrene films inhibiting thermodynamically the dewetting on oxide-free silicon.
Polymer Chemistry | 2011
Roxana-Viorela Ostaci; Denis Damiron; Samer Al Akhrass; Yves Grohens; Eric Drockenmuller
The grafting of poly(ethylene glycol) (PEG) brushes to silicon substrates by the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition, also coined as click chemistry, was studied in detail. First, the grafting kinetics of an alkyne-functionalized dimethylchlorosilane SAM from a toluene solution or in the vapor phase was monitored by water contact angle measurements. α-Methoxy-ω-azido-PEGs with Mw of 5, 20, and 50 kDa were then grafted to the alkyne functionalized SAMs via click chemistry in THF using Cu(PPh3)3Br/DIPEA as the catalytic system. The influence of polymer concentration in the grafting solution (Φ = 0.01–50 wt%) and reaction time (t = 0–72 h) on the thickness, morphology and wetting properties of the PEG brushes was investigated by ellipsometry, scanning probe microscopy and water contact angle measurements. PEG brushes up to 6 nm thick with homogeneous surface coverage and morphology as well as surface roughness on a nanometric scale were thus obtained using mild and robust grafting conditions.