Denis Habauzit
University of Rennes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denis Habauzit.
PLOS ONE | 2011
Antoine Boudot; Gwenneg Kerdivel; Denis Habauzit; Jérôme Eeckhoute; François Le Dily; Gilles Flouriot; Michel Samson; Farzad Pakdel
CXCR4 and CXCR7 are the two receptors for the chemokine CXCL12, a key mediator of the growth effect of estrogens (E2) in estrogen receptor (ER)-positive breast cancers. In this study we examined E2-regulation of the CXCL12 axis components and their involvement in the growth of breast cancer cells. CXCR4 and CXCR7 were differentially regulated by E2 which enhanced the expression of both CXCL12 and CXCR4 but repressed the expression of CXCR7. Formaldehyde-associated isolation of regulatory elements (FAIRE) revealed that E2-mediated transcriptional regulation of these genes is linked to the control of the compaction state of chromatin at their promoters. This effect could be accomplished via several distal ER-binding sites in the regions surrounding these genes, all of which are located 20–250 kb from the transcription start site. Furthermore, individual down-regulation of CXCL12, CXCR4 or CXCR7 expression as well as the inhibition of their activity significantly decreases the rate of basal cell growth. In contrast, E2-induced cell growth was differentially affected. Unlike CXCR7, the inhibition of the expression or activity of either CXCL12 or CXCR4 significantly blunted the E2-mediated stimulation of cellular growth. Besides, CXCR7 over-expression increased the basal MCF-7 cell growth rate and decreased the growth effect of E2. These findings indicate that E2 regulation of the CXCL12 signaling axis is important for the E2-mediated growth effect of breast cancer cells. These data also provide support for distinct biological functions of CXCR4 and CXCR7 and suggest that targeting CXCR4 and/or CXCR7 would have distinct molecular effects on ER-positive breast tumors.
PLOS ONE | 2013
Gwenneg Kerdivel; Rémy Le Guével; Denis Habauzit; François Brion; Selim Ait-Aissa; Farzad Pakdel
The results from recent studies show that some benzophenones (BPs) and their hydroxylated metabolites can function as weak estrogens (E2) in the environment. However, little is known about the structure-activity relationship of these molecules. We have examined the effects of exposure to ten different BPs on the proliferation of estrogen receptor (ER)-positive breast cancer cells and on the transcriptional activity of E2-target genes. We analyzed two genes that are tightly linked with estrogen-mediated proliferation, the CXCL12 and amphiregulin genes and two classical estrogen-responsive genes, the pS2 and progesterone receptor. Significant differences in the BPs efficiency to induce cell proliferation and endogenous E2-target gene expressions were observed. Using ERE-, Sp1-, AP1- and C3-reporter genes that contain different ER-binding sites in their promoter, we also showed significant differences in the BPs efficiency in activation of the ER transactivation. Together, our analyzes showed that the most active molecule is 4-hydroxy-BP. Docking analysis of the interaction of BPs in the ligand-binding pocket of ERα suggests that the minimum structural requirement for the estrogenic activity of BPs is a hydroxyl (OH) group in the phenyl A-ring that allows interaction with Glu-353, Arg-394 or Phe-404, which enhances the stability between BPs and ERα. Our modeling also indicates a loss of interaction between the OH groups of the phenyl B-ring and His-524. In addition, the presence of some OH groups in the phenyl B-ring can create repulsion forces, which may constrain helix 12 in an unfavorable position, explaining the differential estrogenic effects of BPs. These results, together with our analysis of BPs for their potency in activation of cell proliferation and ER-mediated transcription, report an improved understanding of the mechanism and structure–activity relationship of BPs.
Journal of Toxicology and Environmental Health-part B-critical Reviews | 2011
Denis Habauzit; Gilles Flouriot; Farzad Pakdel; Christian Saligaut
Estrogens and estrogen receptors (ER) are key actors in the control of differentiation and survival and act on extrareproductive tissues such as brain. Thus, estrogens may display neuritogenic effects during development and neuroprotective effects in the pathophysiological context of brain ischemia and neurodegenerative pathologies like Alzheimers disease or Parkinsons disease. Some of these effects require classical transcriptional “genomic” mechanisms through ER, whereas other effects appear to rely clearly on “membrane-initiated mechanisms” through cytoplasmic signal transduction pathways. Disturbances of these mechanisms by endocrine-disrupting chemicals (EDC) may exert adverse effects on brain. Some EDC may act via ER-independent mechanisms but might cross-react with endogenous estrogen. Other EDC may act through ER-dependent mechanisms and display agonistic/antagonistic estrogenic properties. Because of these potential effects of EDC, it is necessary to establish sensitive cell-based assays to determine EDC effects on brain. In the present review, some effects of estrogens and EDC are described with focus on ER-mediated effects in neuronal cells. Particular attention is given to PC12 cells, an interesting model to study the mechanisms underlying ER-mediated differentiating and neuroprotective effects of estrogens.
Environmental Toxicology | 2010
Denis Habauzit; Antoine Boudot; Gwenneg Kerdivel; Gilles Flouriot; Farzad Pakdel
Several methods have been developed to evaluate and quantify the effects of Endocrine disruptor chemicals (EDC). Nevertheless, most of these methods are time‐consuming or not enough sensitive to detect EDC at the environmental range. To link the biological effect of tested EDC to natural protein secretion, we have developed a new screening method based on the secretion of the cytokine CXCL12 (or SDF‐1, Stroma‐cell Derived Factor 1), which plays a capital role in cell survival and migration. We have demonstrated that CXCL12 secretion is regulated by estrogenic compounds in a dose‐dependent way in ER‐positive breast cancer cell lines (MCF‐7 and T47D). By combining cell culture and ELISA test, we used this up‐regulation of CXCL12 secretion to test several major environmental contaminants. Our results showed that 17β‐estradiol (from 10−11 M), 17α‐ethynylestradiol (from 10−12 M), genistein (from 10−8 M) and bisphenol A (from 10−6 M) dose‐regulate CXCL12 secretion in T47D. In contrast, antiestrogens, raloxifen and 4‐hydroxytamoxifen, had no effect on the CXCL12 secretion, but were able to inhibit E2 effect. Moreover, we used cell proliferation assays to evaluate the effect of these different compounds on the growth of T47D cells. We found strong correlation (P = 0.7) between proliferation and CXCL12 secretion. However CXCL12 secretion was as sensitive as cell proliferation assays but appeared more rapid. Thus, this bioassay named CXCL‐test (for Checking Xeno‐estrogen activity by CXCL12 secretion in breast cancer cell Lines) constitutes a fast and sensitive method for the detection of estrogenic compounds allowing in 14 h to achieve a detection limit of 10−11 M of E2 (2.7 ng/L).
PLOS ONE | 2014
Denis Habauzit; Catherine Le Quément; Maxim Zhadobov; Catherine Martin; Marc Aubry; Ronan Sauleau; Yves Le Dréan
Radiofrequency radiations constitute a new form of environmental pollution. Among them, millimeter waves (MMW) will be widely used in the near future for high speed communication systems. This study aimed therefore to evaluate the biocompatibility of MMW at 60 GHz. For this purpose, we used a whole gene expression approach to assess the effect of acute 60 GHz exposure on primary cultures of human keratinocytes. Controls were performed to dissociate the electromagnetic from the thermal effect of MMW. Microarray data were validated by RT-PCR, in order to ensure the reproducibility of the results. MMW exposure at 20 mW/cm2, corresponding to the maximum incident power density authorized for public use (local exposure averaged over 1 cm2), led to an increase of temperature and to a strong modification of keratinocyte gene expression (665 genes differentially expressed). Nevertheless, when temperature is artificially maintained constant, no modification in gene expression was observed after MMW exposure. However, a heat shock control did not mimic exactly the MMW effect, suggesting a slight but specific electromagnetic effect under hyperthermia conditions (34 genes differentially expressed). By RT-PCR, we analyzed the time course of the transcriptomic response and 7 genes have been validated as differentially expressed: ADAMTS6, NOG, IL7R, FADD, JUNB, SNAI2 and HIST1H1A. Our data evidenced a specific electromagnetic effect of MMW, which is associated to the cellular response to hyperthermia. This study raises the question of co-exposures associating radiofrequencies and other environmental sources of cellular stress.
Chemosphere | 2014
Denis Habauzit; François Ferrière; Nadine Botherel; Gilles Flouriot; Farzad Pakdel; Christian Saligaut
Xeno-estrogens, a class of endocrine disrupting chemicals (EDCs), can disturb estrogen receptor-dependent pathways involved in differentiation, proliferation or protection. Multiple methods have been developed to characterize the disturbances induced by EDCs in different cells or organs. In this study we have developed a new tool for the assessment of estrogenic compounds on differentiation. For this purpose we used the global model of NGF-induced neurite outgrowth of a pseudoneuronal PC12 cell line stably transfected with estrogen receptor alpha (PC12 ER). This new test evidences a new selectivity in which estradiol, genistein and 4-hydroxytamoxifen increased the NGF-induced neurite outgrowth of PC12 ER cells in a dose-dependent manner. In contrast, the strong estrogen agonist 17α-ethynylestradiol, the strong antagonist raloxifene and the agonist bisphenol A were unable to modify the neuritogenesis of PC12 ER cells. Therefore, the analysis of neuritogenesis in PC12 ER cells constitutes a complementary tool for the characterization of xeno-estrogen activity and also serves as a basis for further studies focusing on the mechanisms of EDCs in a neuronal context. Moreover, this test constitutes an alternative to animal testing.
Bioelectromagnetics | 2014
Catherine Le Quément; Christophe Nicolas Nicolaz; Denis Habauzit; Maxim Zhadobov; Ronan Sauleau; Yves Le Dréan
Emerging high data rate wireless communication systems, currently under development, will operate at millimeter waves (MMW) and specifically in the 60u2009GHz band for broadband short-range communications. The aim of this study was to investigate potential effects of MMW radiation on the cellular endoplasmic reticulum (ER) stress. Human skin cell lines were exposed at 60.4u2009GHz, with incident power densities (IPD) ranging between 1 and 20u2009mW/cm(2) . The upper IPD limits correspond to the ICNIRP local exposure limit for the general public. The expression of ER-stress sensors, namely BIP and ORP150, was then examined by real-time RT-PCR. Our experimental data demonstrated that MMW radiations do not change BIP or ORP150 mRNA basal levels, whatever the cell line, the exposure duration or the IPD level. Co-exposure to the well-known ER-stress inducer thapsigargin (TG) and MMW were then assessed. Our results show that MMW exposure at 20u2009mW/cm(2) inhibits TG-induced BIP and ORP150 over expression. Experimental controls showed that this inhibition is linked to the thermal effect resulting from the MMW exposure.
Chemosphere | 2017
Denis Habauzit; Catherine Martin; Gwenneg Kerdivel; Farzad Pakdel
CXCL-test is a method that uses the estrogen-dependent secretion of the natural endogenous chemokine CXCL12 to evaluate the estrogenic activity of molecules. CXCL12 chemokine is involved in the estrogen dependent proliferation of breast cancer cells. Its measure is an indicator of cell proliferation and is used as an alternative test to classical proliferation test. Here we aimed to optimize this test, first to increase the number of tested molecules in a single assay and then to decrease the number of intermediate steps. The optimized CXCL-test was finally used for the evaluation of the estrogenic potency of emerging chemical pollutants: the UV filter benzophenones (BPs). The effect of BPs on CXCL12 secretion was also validated by real time quantitative RT-PCR. The optimized CXCL-test allowed a fast and direct assessment of estrogenic potency of molecules. The estrogenic activities of benzophenones were characterized and divided in two groups. The first one contains weak estrogenic compounds (BP, BP1, BP2, BP3, 234BP and 2344BP). The second one contains medium estrogenic compounds (4BP, 44BP, BP8, THB).
Molecular and Cellular Endocrinology | 2014
Gwenneg Kerdivel; Antoine Boudot; Denis Habauzit; Frédéric Percevault; Florence Demay; Farzad Pakdel; Gilles Flouriot
Estrogen receptor alpha (ERα) is generally considered to be a good prognostic marker because almost 70% of ERα-positive tumors respond to anti-hormone therapies. Unfortunately, during cancer progression, mammary tumors can escape from estrogen control, resulting in resistance to treatment. In this study, we demonstrate that activation of the actin/megakaryoblastic leukemia 1 (MKL1) signaling pathway promotes the hormonal escape of estrogen-sensitive breast cancer cell lines. The actin/MKL1 signaling pathway is silenced in differentiated ERα-positive breast cancer MCF-7 and T47D cell lines and active in ERα-negative HMT-3522 T4-2 and MDA-MB-231 breast cancer cells, which have undergone epithelial-mesenchymal transition. We showed that MKL1 activation in MCF-7 cells, either by modulating actin dynamics or using MKL1 mutants, down-regulates ERα expression and abolishes E2-dependent cell growth. Interestingly, the constitutively active form of MKL1 represses PR and HER2 expression in these cells and increases the expression of HB-EGF, TGFβ, and amphiregulin growth factors in an E2-independent manner. The resulting expression profile (ER-, PR-, HER2-) typically corresponds to the triple-negative breast cancer expression profile.
Journal of Proteome Research | 2018
Pierre Le Pogam; Mickael Doué; Yann Le Page; Denis Habauzit; Maxim Zhadobov; Ronan Sauleau; Yves Le Dréan; David Rondeau
The glucose analogue 2-deoxyglucose (2-DG) impedes cancer progression in animal models and is currently being assessed as an anticancer therapy, yet the mode of action of this drug of high clinical significance has not been fully delineated. In an attempt to better characterize its pharmacodynamics, an integrative UPLC-Q-Exactive-based joint metabolomic and lipidomic approach was undertaken to evaluate the metabolic perturbations induced by this drug in human HaCaT keratinocyte cells. R-XCMS data processing and subsequent multivariate pattern recognition, metabolites identification, and pathway analyses identified eight metabolites that were most significantly changed upon a 3 h 2-DG exposure. Most of these dysregulated features were emphasized in the course of lipidomic profiling and could be identified as ceramide and glucosylceramide derivatives, consistently with their involvement in cell death programming. Even though metabolomic analyses did not generally afford such clear-cut dysregulations, some alterations in phosphatidylcholine and phosphatidylethanolamine derivatives could be highlighted as well. Overall, these results support the adequacy of the proposed analytical workflow and might contribute to a better understanding of the mechanisms underlying the promising effects of 2-DG.