Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yves Vigouroux is active.

Publication


Featured researches published by Yves Vigouroux.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A single domestication for maize shown by multilocus microsatellite genotyping

Yoshihiro Matsuoka; Yves Vigouroux; Major M. Goodman; G Jesus Sanchez; Edward S. Buckler; John Doebley

There exists extraordinary morphological and genetic diversity among the maize landraces that have been developed by pre-Columbian cultivators. To explain this high level of diversity in maize, several authors have proposed that maize landraces were the products of multiple independent domestications from their wild relative (teosinte). We present phylogenetic analyses based on 264 individual plants, each genotyped at 99 microsatellites, that challenge the multiple-origins hypothesis. Instead, our results indicate that all maize arose from a single domestication in southern Mexico about 9,000 years ago. Our analyses also indicate that the oldest surviving maize types are those of the Mexican highlands with maize spreading from this region over the Americas along two major paths. Our phylogenetic work is consistent with a model based on the archaeological record suggesting that maize diversified in the highlands of Mexico before spreading to the lowlands. We also found only modest evidence for postdomestication gene flow from teosinte into maize.


Nature | 2005

The origin of the naked grains of maize

Huai Wang; Tina Nussbaum-Wagler; Bailin Li; Qiong Zhao; Yves Vigouroux; Marianna Faller; Kirsten Bomblies; Lewis Lukens; John Doebley

The most critical step in maize (Zea mays ssp. mays) domestication was the liberation of the kernel from the hardened, protective casing that envelops the kernel in the maize progenitor, teosinte. This evolutionary step exposed the kernel on the surface of the ear, such that it could readily be used by humans as a food source. Here we show that this key event in maize domestication is controlled by a single gene (teosinte glume architecture or tga1), belonging to the SBP-domain family of transcriptional regulators. The factor controlling the phenotypic difference between maize and teosinte maps to a 1-kilobase region, within which maize and teosinte show only seven fixed differences in their DNA sequences. One of these differences encodes a non-conservative amino acid substitution and may affect protein function, and the other six differences potentially affect gene regulation. Molecular evolution analyses show that this region was the target of selection during maize domestication. Our results demonstrate that modest genetic changes in single genes can induce dramatic changes in phenotype during domestication and evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication.

Yves Vigouroux; Michael D. McMullen; Chris Todd Hittinger; K. Houchins; L. Schulz; Stephen Kresovich; Yoshihiro Matsuoka; John Doebley

Crop species experienced strong selective pressure directed at genes controlling traits of agronomic importance during their domestication and subsequent episodes of selective breeding. Consequently, these genes are expected to exhibit the signature of selection. We screened 501 maize genes for the signature of selection using microsatellites or simple sequence repeats (SSRs). We applied the Ewens–Watterson test, which can reveal deviations from a neutral-equilibrium model, as well as two nonequilibrium tests that incorporate the domestication bottleneck. We investigated two classes of SSRs: those known to be polymorphic in maize (Class I) and those previously classified as monomorphic in maize (Class II). Fifteen SSRs exhibited some evidence for selection in maize and 10 showed evidence under stringent criteria. The genes containing nonneutral SSRs are candidates for agronomically important genes. Because demographic factors can bias our tests, further independent tests of these candidates are necessary. We applied such an additional test to one candidate, which encodes a MADS box transcriptional regulator, and confirmed that this gene experienced a selective sweep during maize domestication. Genomic scans for the signature of selection offer a means of identifying new genes of agronomic importance even when gene function and the phenotype of interest are unknown.


American Journal of Botany | 2008

Population structure and genetic diversity of New World maize races assessed by DNA microsatellites

Yves Vigouroux; Jeffrey C. Glaubitz; Yoshihiro Matsuoka; Major M. Goodman; G Jesus Sanchez; John Doebley

Because of the economic importance of maize and its scientific importance as a model system for studies of domestication, its evolutionary history is of general interest. We analyzed the population genetic structure of maize races by genotyping 964 individual plants, representing almost the entire set of ∼350 races native to the Americas, with 96 microsatellites. Using Bayesian clustering, we detected four main clusters consisting of highland Mexican, northern United States (US), tropical lowland, and Andean races. Phylogenetic analysis indicated that the southwestern US was an intermediary stepping stone between Mexico and the northern US. Furthermore, southeastern US races appear to be of mixed northern flint and tropical lowland ancestry, while lowland middle South American races are of mixed Andean and tropical lowland ancestry. Several cases of post-Columbian movement of races were detected, most notably from the US to South America. Of the four main clusters, the highest genetic diversity occurs in highland Mexican races, while diversity is lowest in the Andes and northern US. Isolation by distance appears to be the main factor underlying the historical diversification of maize. We identify highland Mexico and the Andes as potential sources of genetic diversity underrepresented among elite lines used in maize breeding programs.


Molecular Ecology | 2013

Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations

Stéphane De Mita; Anne-Céline Thuillet; Nourollah Ahmadi; Stéphanie Manel; Joëlle Ronfort; Yves Vigouroux

Thanks to genome‐scale diversity data, present‐day studies can provide a detailed view of how natural and cultivated species adapt to their environment and particularly to environmental gradients. However, due to their sensitivity, up‐to‐date studies might be more sensitive to undocumented demographic effects such as the pattern of migration and the reproduction regime. In this study, we provide guidelines for the use of popular or recently developed statistical methods to detect footprints of selection. We simulated 100 populations along a selective gradient and explored different migration models, sampling schemes and rates of self‐fertilization. We investigated the power and robustness of eight methods to detect loci potentially under selection: three designed to detect genotype–environment correlations and five designed to detect adaptive differentiation (based on FST or similar measures). We show that genotype–environment correlation methods have substantially more power to detect selection than differentiation‐based methods but that they generally suffer from high rates of false positives. This effect is exacerbated whenever allele frequencies are correlated, either between populations or within populations. Our results suggest that, when the underlying genetic structure of the data is unknown, a number of robust methods are preferable. Moreover, in the simulated scenario we used, sampling many populations led to better results than sampling many individuals per population. Finally, care should be taken when using methods to identify genotype–environment correlations without correcting for allele frequency autocorrelation because of the risk of spurious signals due to allele frequency correlations between populations.


Theoretical and Applied Genetics | 2006

Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers

Cédric Mariac; Viviane Luong; Issoufou Kapran; Aïssata Mamadou; Fabrice Sagnard; Monique Deu; Jacques Chantereau; Bruno Gérard; Jupiter Ndjeunga; Gilles Bezançon; Jean Louis Pham; Yves Vigouroux

Genetic diversity of crop species in sub-Sahelian Africa is still poorly documented. Among such crops, pearl millet is one of the most important staple species. In Niger, pearl millet covers more than 65% of the total cultivated area. Analyzing pearl millet genetic diversity, its origin and its dynamics is important for in situ and ex situ germplasm conservation and to increase knowledge useful for breeding programs. We developed new genetic markers and a high-throughput technique for the genetic analysis of pearl millet. Using 25 microsatellite markers, we analyzed genetic diversity in 46 wild and 421 cultivated accessions of pearl millet in Niger. We showed a significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions. This result contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl millet populations. We found a strong differentiation between the cultivated and wild groups in Niger. Analyses of introgressions between cultivated and wild accessions showed modest but statistically supported evidence of introgressions. Wild accessions in the central region of Niger showed introgressions of cultivated alleles. Accessions of cultivated pearl millet showed introgressions of wild alleles in the western, central, and eastern parts of Niger.


Genetics | 2009

Association Studies Identify Natural Variation at PHYC Linked to Flowering Time and Morphological Variation in Pearl Millet

Abdoul-Aziz Saïdou; Cédric Mariac; Vivianne Luong; Jean-Louis Pham; Gilles Bezançon; Yves Vigouroux

The identification of genes selected during and after plant domestication is an important research topic to enhance knowledge on adaptative evolution. Adaptation to different climates was a key factor in the spread of domesticated crops. We conducted a study to identify genes responsible for these adaptations in pearl millet and developed an association framework to identify genetic variations associated with the phenotype in this species. A set of 90 inbred lines genotyped using microsatellite loci and AFLP markers was used. The population structure was assessed using two different Bayesian approaches that allow inbreeding or not. Association studies were performed using a linear mixed model considering both the population structure and familial relationships between inbred lines. We assessed the ability of the method to limit the number of false positive associations on the basis of the two different Bayesian methods, the number of populations considered and different morphological traits while also assessing the power of the methodology to detect given additive effects. Finally, we applied this methodology to a set of eight pearl millet genes homologous to cereal flowering pathway genes. We found significant associations between several polymorphisms of the pearl millet PHYC gene and flowering time, spike length, and stem diameter in the inbred line panel. To validate this association, we performed a second association analysis in a different set of pearl millet individuals from Niger. We confirmed a significant association between genetic variation in this gene and these characters.


Molecular Ecology | 2006

Farmers’ use of wild relative and sexual reproduction in a vegetatively propagated crop. The case of yam in Benin

Nora Scarcelli; Serge Tostain; Yves Vigouroux; C. Agbangla; O. Daïnou; Jean-Louis Pham

The impact of traditional farmers’ management on genetic diversity of vegetatively propagated crops is poorly documented. In this study, we analysed the impact of ennoblement of spontaneous yams, an original traditional farmers’ practice, on the genetic diversity of yam (Dioscorea sp.) in Benin. We used 11 microsatellite markers on yam tubers from a small village in northern Benin and demonstrated that wild × cultivated hybrids are spontaneously formed. Many of the spontaneous yams collected by farmers from surrounding savannah areas for ennoblement were shown to be of wild and hybrid genotypes. Moreover, we demonstrated that some yam varieties have a wild or hybrid signature. Lastly, we performed a broader ranging genetic analysis on yam material from throughout Benin and showed that this practice is used in different ecological and ethno‐linguistic regions. Through this practice, farmers create new varieties with new genetic combinations via sexual reproduction of wild and cultivated yams. This system, whereby a sexual cycle and asexual propagation are mixed, ensures potential large‐scale cultivation of the best genotypes while preserving the potential for future adaptation.


PLOS ONE | 2011

A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotyledons.

Nora Scarcelli; Adeline Barnaud; Wolf L. Eiserhardt; Urs A. Treier; Marie Seveno; Amélie d'Anfray; Yves Vigouroux; Jean-Christophe Pintaud

Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC). Here we developed a new set of 100 primer pairs optimized for amplification in Monocotyledons. Primer pairs amplify coding (exon) and non-coding regions (intron and intergenic spacer). They span the different chloroplast regions: 72 are located in the LSC, 13 in the Small Single Copy (SSC) and 15 in the Inverted Repeat region (IR). Amplification and sequencing were tested in 13 species of Monocotyledons: Dioscorea abyssinica, D. praehensilis, D. rotundata, D. dumetorum, D. bulbifera, Trichopus sempervirens (Dioscoreaceae), Phoenix canariensis, P. dactylifera, Astrocaryum scopatum, A. murumuru, Ceroxylon echinulatum (Arecaceae), Digitaria excilis and Pennisetum glaucum (Poaceae). The diversity found in Dioscorea, Digitaria and Pennisetum mainly corresponded to Single Nucleotide Polymorphism (SNP) while the diversity found in Arecaceae also comprises Variable Number Tandem Repeat (VNTR). We observed that the most variable loci (rps15-ycf1, rpl32-ccsA, ndhF-rpl32, ndhG-ndhI and ccsA) are located in the SSC. Through the analysis of the genetic structure of a wild-cultivated species complex in Dioscorea, we demonstrated that this new set of primers is of great interest for population genetics and we anticipate that it will also be useful for phylogeny and bar-coding studies.


Molecular Ecology Resources | 2014

Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies

Cédric Mariac; Nora Scarcelli; Juliette Pouzadou; Adeline Barnaud; Claire Billot; Adama Faye; Ayite Kougbeadjo; Vincent Maillol; Guillaume Martin; François Sabot; Sylvain Santoni; Yves Vigouroux; Thomas L. P. Couvreur

Biodiversity, phylogeography and population genetic studies will be revolutionized by access to large data sets thanks to next‐generation sequencing methods. In this study, we develop an easy and cost‐effective protocol for in‐solution enrichment hybridization capture of complete chloroplast genomes applicable at deep‐multiplexed levels. The protocol uses cheap in‐house species‐specific probes developed via long‐range PCR of the entire chloroplast. Barcoded libraries are constructed, and in‐solution enrichment of the chloroplasts is carried out using the probes. This protocol was tested and validated on six economically important West African crop species, namely African rice, pearl millet, three African yam species and fonio. For pearl millet, we also demonstrate the effectiveness of this protocol to retrieve 95% of the sequence of the whole chloroplast on 95 multiplexed individuals in a single MiSeq run at a success rate of 95%. This new protocol allows whole chloroplast genomes to be retrieved at a modest cost and will allow unprecedented resolution for closely related species in phylogeography studies using plastomes.

Collaboration


Dive into the Yves Vigouroux's collaboration.

Top Co-Authors

Avatar

Cédric Mariac

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Nora Scarcelli

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Jean Louis Pham

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Adeline Barnaud

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Gilles Bezançon

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Monique Deu

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Ndjido Kane

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar

Issoufou Kapran

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Anne-Céline Thuillet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie Couderc

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge