Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvette Chin is active.

Publication


Featured researches published by Yvette Chin.


Nature Biotechnology | 2008

Peptide-conjugated antisense oligonucleotides for targeted inhibition of a transcriptional regulator in vivo

Erik Henke; Jonathan Perk; Jelena Vider; Paola de Candia; Yvette Chin; David B. Solit; Vladimir Ponomarev; Luca Cartegni; Katia Manova; Neal Rosen; Robert Benezra

Transcription factors are important targets for the treatment of a variety of malignancies but are extremely difficult to inhibit, as they are located in the cells nucleus and act mainly by protein-DNA and protein-protein interactions. The transcriptional regulators Id1 and Id3 are attractive targets for cancer therapy as they are required for tumor invasiveness, metastasis and angiogenesis. We report here the development of an antitumor agent that downregulates Id1 effectively in tumor endothelial cells in vivo. Efficient delivery and substantial reduction of Id1 protein levels in the tumor endothelium were effected by fusing an antisense molecule to a peptide known to home specifically to tumor neovessels. In two different tumor models, systemic delivery of this drug led to enhanced hemorrhage, hypoxia and inhibition of primary tumor growth and metastasis, similar to what is observed in Id1 knockout mice. Combination with the Hsp90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin yielded virtually complete growth suppression of aggressive breast tumors.


Cell Reports | 2013

TGF-β-Id1 signaling opposes Twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition.

Marko Stankic; Svetlana Pavlovic; Yvette Chin; Edi Brogi; David Padua; Larry Norton; Joan Massagué; Robert Benezra

ID genes are required for breast cancer colonization of the lungs, but the mechanism remains poorly understood. Here, we show that Id1 expression induces a stem-like phenotype in breast cancer cells while retaining epithelial properties, contrary to the notion that cancer stem-like properties are inextricably linked to the mesenchymal state. During metastatic colonization, Id1 induces a mesenchymal-to-epithelial transition (MET), specifically in cells whose mesenchymal state is dependent on the Id1 target protein Twist1, but not at the primary site, where this state is controlled by the zinc finger protein Snail1. Knockdown of Id expression in metastasizing cells prevents MET and dramatically reduces lung colonization. Furthermore, Id1 is induced by transforming growth factor (TGF)-β only in cells that have first undergone epithelial-to-mesenchymal transition (EMT), demonstrating that EMT is a prerequisite for subsequent Id1-induced MET during lung colonization. Collectively, these studies underscore the importance of Id-mediated phenotypic switching during distinct stages of breast cancer metastasis.


Cancer Research | 2006

Reassessment of Id1 Protein Expression in Human Mammary, Prostate, and Bladder Cancers Using a Monospecific Rabbit Monoclonal Anti-Id1 Antibody

Jonathan Perk; Ignacio Gil-Bazo; Yvette Chin; Paola de Candia; John Chen; Yuntao Zhao; Shirley Chao; Wai Cheong; Yaohuang Ke; Hikmat Al-Ahmadie; William L. Gerald; Edi Brogi; Robert Benezra

Id proteins are a class of dominant-negative antagonists of helix-loop-helix transcription factors and have been shown to control differentiation of a variety of cell types in diverse organisms. Although the importance of Id1 in tumor endothelial cells is well established, the expression and role of the Id1 protein in human cancer cells is controversial. To explore this issue, we developed and characterized a highly specific rabbit monoclonal antibody against Id1 to assess its expression in human breast, prostate, and bladder malignancies. Our results show that in usual types of human mammary carcinomas, the Id1 protein is expressed exclusively in the endothelium. Interestingly, we detected nuclear expression of the Id1 protein in the tumor cells in 10 of 45 cases of poorly differentiated and highly aggressive carcinoma with metaplastic morphology. Similarly, only 1 of 30 prostate cancer samples showed Id1-positive tumor cells, whereas in almost all, endothelial cells showed high Id1 expression. Intriguingly, whereas normal prostate glands do not show any Id1 protein expression, basal layer cells of benign prostate glands in proximity to tumors expressed high levels of the Id1 protein. In contrast to the lack of Id1 expression in the usual types of mammary and prostate cancers, the majority of transitional cell bladder tumors showed Id1 protein expression in both tumor and endothelial cells. These results suggest that further refinement of Id1 expression patterns in a variety of tumor types will be necessary to identify and study the functional roles played by Id1 in human neoplastic processes.


Stem Cells and Development | 2012

Id1 maintains embryonic stem cell self-renewal by up-regulation of Nanog and repression of Brachyury expression.

Elizabeth E. Romero-Lanman; Svetlana Pavlovic; Bhishma Amlani; Yvette Chin; Robert Benezra

Understanding the mechanism by which embryonic stem (ES) cells self-renew is crucial for the realization of their therapeutic potential. Earlier, overexpression of Id proteins was shown to be sufficient to maintain mouse ES cells in a self-renewing state even in the absence of serum. Here, we use ES cells derived from Id deficient mice to investigate the requirement for Id proteins in maintaining ES cell self-renewal. We find that Id1(-/-) ES cells have a defect in self-renewal and a propensity to differentiate. We observe that chronic or acute loss of Id1 leads to a down-regulation of Nanog, a critical regulator of self-renewal. In addition, in the absence of Id1, ES cells express elevated levels of Brachyury, a marker of mesendoderm differentiation. We find that loss of both Nanog and Id1 is required for the up-regulation of Brachyury, and ectopic Nanog expression in Id1(-/-) ES cells rescues the self-renewal defect, indicating that Nanog is the major downstream target of Id1. These results identify Id1 as a critical factor in the maintenance of ES cell self-renewal and suggest a plausible mechanism for its control of lineage commitment.


Stem cell reports | 2014

ID1 is a functional marker for intestinal stem and progenitor cells required for normal response to injury.

Ning Zhang; Rhonda K. Yantiss; Hyung song Nam; Yvette Chin; Xi Kathy Zhou; Ellen J. Scherl; Brian P. Bosworth; Kotha Subbaramaiah; Andrew J. Dannenberg; Robert Benezra

Summary LGR5 and BMI1 mark intestinal stem cells in crypt base columnar cells and +4 position cells, respectively, but characterization of functional markers in these cell populations is limited. ID1 maintains the stem cell potential of embryonic, neural, and long-term repopulating hematopoietic stem cells. Here, we show in both human and mouse intestine that ID1 is expressed in cycling columnar cells, +4 position cells, and transit-amplifying cells in the crypt. Lineage tracing revealed ID1+ cells to be self-renewing, multipotent stem/progenitor cells that are responsible for the long-term renewal of the intestinal epithelium. Single ID1+ cells can generate long-lived organoids resembling mature intestinal epithelium. Complete knockout of Id1 or selective deletion of Id1 in intestinal epithelium or in LGR5+ stem cells sensitizes mice to chemical-induced colon injury. These experiments identify ID1 as a marker for intestinal stem/progenitor cells and demonstrate a role for ID1 in maintaining the potential for repair in response to colonic injury.


Cancer Prevention Research | 2015

Id1 Deficiency Protects Against Tumor Formation in ApcMin/+ Mice but Not in a Mouse Model of Colitis-Associated Colon Cancer

Ning Zhang; Kotha Subbaramaiah; Rhonda K. Yantiss; Xi Kathy Zhou; Yvette Chin; Robert Benezra; Andrew J. Dannenberg

Different mechanisms contribute to the development of sporadic, hereditary and colitis-associated colorectal cancer. Inhibitor of DNA binding/differentiation (Id) proteins act as dominant-negative antagonists of basic helix–loop–helix transcription factors. Id1 is a promising target for cancer therapy, but little is known about its role in the development of colon cancer. We used immunohistochemistry to demonstrate that Id1 is overexpressed in human colorectal adenomas and carcinomas, whether sporadic or syndromic. Furthermore, elevated Id1 levels were found in dysplasia and colon cancer arising in patients with inflammatory bowel disease. Because levels of PGE2 are also elevated in both colitis and colorectal neoplasia, we determined whether PGE2 could induce Id1. PGE2 via EP4 stimulated protein kinase A activity resulting in enhanced pCREB-mediated Id1 transcription in human colonocytes. To determine the role of Id1 in carcinogenesis, two mouse models were used. Consistent with the findings in humans, Id1 was overexpressed in tumors arising in both ApcMin/+ mice, a model of familial adenomatous polyposis, and in experimental colitis-associated colorectal neoplasia. Id1 deficiency led to significant decrease in the number of intestinal tumors in ApcMin/+ mice and prolonged survival. In contrast, Id1 deficiency did not affect the number or size of tumors in the model of colitis-associated colorectal neoplasia, likely due to exacerbation of colitis associated with Id1 loss. Collectively, these results suggest that Id1 plays a role in gastrointestinal carcinogenesis. Our findings also highlight the need for different strategies to reduce the risk of colitis-associated colorectal cancer compared with sporadic or hereditary colorectal cancer. Cancer Prev Res; 8(4); 303–11. ©2015 AACR.


The EMBO Journal | 2017

Whole chromosome loss and associated breakage–fusion–bridge cycles transform mouse tetraploid cells

Rozario Thomas; Daniel Henry Marks; Yvette Chin; Robert Benezra

Whole chromosome gains or losses (aneuploidy) are a hallmark of ~70% of human tumors. Modeling the consequences of aneuploidy has relied on perturbing spindle assembly checkpoint (SAC) components, but interpretations of these experiments are clouded by the multiple functions of these proteins. Here, we used a Cre recombinase‐mediated chromosome loss strategy to individually delete mouse chromosomes 9, 10, 12, or 14 in tetraploid immortalized murine embryonic fibroblasts. This methodology also involves the generation of a dicentric chromosome intermediate, which subsequently undergoes a series of breakage–fusion–bridge (BFB) cycles. While the aneuploid cells generally display a growth disadvantage in vitro, they grow significantly better in low adherence sphere‐forming conditions and three of the four lines are transformed in vivo, forming large and invasive tumors in immunocompromised mice. The aneuploid cells display increased chromosomal instability and DNA damage, a mutator phenotype associated with tumorigenesis in vivo. Thus, these studies demonstrate a causative role for whole chromosome loss and the associated BFB‐mediated instability in tumorigenesis and may shed light on the early consequences of aneuploidy in mammalian cells.


American Journal of Pathology | 2015

Id1 expression in endothelial cells of the colon is required for normal response to injury.

Ning Zhang; Kotha Subbaramaiah; Rhonda K. Yantiss; Xi Kathy Zhou; Yvette Chin; Ellen J. Scherl; Brian P. Bosworth; Robert Benezra; Andrew J. Dannenberg

Inhibitor of DNA binding (ID)-1 is important for angiogenesis during embryogenesis and tumor development. Whether ID1 expression in endothelial cells of the colon is required for normal response to injury is unknown. We demonstrate that Id1 is up-regulated in colonic endothelial cells in an experimental model of colitis and in the inflamed mucosa of patients with inflammatory bowel disease. Because prostaglandin E2 and tumor necrosis factor-α are also elevated in colitis, we determined whether these factors could induce ID1 transcription in cultured endothelial cells. Tumor necrosis factor-α stimulated ID1 transcription via early growth response 1 protein (Egr-1). By contrast, the induction of ID1 by prostaglandin E2 was mediated by cAMP response element-binding protein (CREB). To determine whether the increased ID1 levels in the endothelial cells of inflamed mucosa were an adaptive response that modulated the severity of tissue injury, Id1 was conditionally depleted in the endothelium of mice, which sensitized the mice to more severe chemical colitis, including more severe diarrhea, bleeding, and histological injury, and shorter colon compared with control mice. Moreover, depletion of Id1 in the vasculature was associated with increased CD31(+) aggregates and increased vascular permeability in inflamed mucosa compared with those in Id1 wild-type control mice. These results suggest that endothelial ID1 up-regulation in inflamed colonic mucosa is an adaptive response that modulates the severity of tissue injury.


bioRxiv | 2017

Whole chromosome loss in tetraploid cells confers tumorigenic potential in a mouse allograft model

Rozario Thomas; Daniel Henry Marks; Yvette Chin; Robert Benezra

Whole chromosome gains or losses (aneuploidy) are a hallmark of ~70% of human tumors. Modeling the consequences of aneuploidy has relied on perturbing spindle assembly checkpoint (SAC) components but interpretations of these experiments are clouded by the multiple functions of these proteins. Here we used a Cre recombinase-mediated chromosome loss strategy to individually delete mouse chromosomes 9, 10, 12 or 14 in tetraploid immortalized murine embryonic fibroblasts. While the aneuploid cells generally display a growth disadvantage in vitro, they grow significantly better in low adherence sphere-forming conditions and 3 of the 4 lines are transformed in vivo, forming large and invasive tumors in immunocompromised mice. The aneuploid cells display increased chromosomal instability and DNA damage, a mutator phenotype associated with tumorigenesis in vivo. Thus, these studies demonstrate a causative role for whole chromosome loss in tumorigenesis and may shed light on the early consequences of aneuploidy in mammalian cells.


Cancer Research | 2017

Abstract 4975: A small molecule pan Id protein antagonist shows strong antitumor activity

Paulina Wojnarowicz; Bina Desai; Yvette Chin; Sang Bae Lee; Marta García-Cao; Ouathek Ouerfelli; Guangli Yang; Sijia Xu; Yehuda Goldgur; Meredith Miller; Jaideep Chaudhary; William A. Garland; Steven K. Albanese; Rajesh Soni; John Philip; Larry Norton; Neal Rosen; Ronald C. Hendrickson; Xi Kathy Zhou; Antonio Iavarone; Andrew J. Dannenberg; John D. Chodera; Nikola P. Pavletich; Anna Lasorella; Robert Benezra

The Id family of helix-loop-helix (HLH) proteins, Id1, Id2, Id3 and Id4, play a critical role in inhibiting differentiation during mammalian embryogenesis. They function in part by sequestering ubiquitously expressed E protein bHLH transcription factors via direct protein-protein interactions. Various Id proteins are re-expressed in adults in a number of pathologic states including cancer and diseases of the vasculature, where their activity has been shown to be essential for disease progression. The present study describes the solving of the Id1-E47 dimer crystal structure and subsequent development and characterization of a small molecule antagonist of the Id protein family, AGX51. AGX51 was identified in an in silico screen for compounds that could bind a hydrophobic crevice adjacent to the loop region of Id1, highly conserved in the Id family. AGX51 inhibits the endogenous Id1-E protein interaction leading to the degradation of Id1 via ubiquitin-mediated proteolysis. The stability of all four members of the Id family are antagonized by AGX51 leading to a G0-G1 arrest and profound inhibition of viability with no acquired resistance observed in multiple cell lines after continuous exposure to the compound. Administration of AGX51 is well tolerated in mice and phenocopies genetic loss of Id expression analyses: suppression of breast cancer metastases to the lung associated with a reduced mesenchymal-to-epithelial transition, perturbation of the vasculature within the primary tumor, and growth regression of paclitaxel resistant breast tumors in combination with paclitaxel therapy. These studies identify a novel, first-in-class compound capable of antagonizing the activity of a protein family formerly considered undruggable and point to the possible utility of AGX51 in the management of multiple disease processes in patients. Citation Format: Paulina M. Wojnarowicz, Bina Desai, Yvette Chin, Sang Bae Lee, Marta Garcia-Cao, Ouathek Ouerfelli, Guangli Yang, Sijia Xu, Yehuda Goldgur, Meredith A. Miller, Jaideep Chaudhary, William A. Garland, Steven K. Albanese, Rajesh Soni, John Philip, Larry Norton, Neal Rosen, Ronald C. Hendrickson, Xi Kathy Zhou, Antonio Iavarone, Andrew J. Dannenberg, John D. Chodera, Nikola Pavletich, Anna Lasorella, Robert Benezra. A small molecule pan Id protein antagonist shows strong antitumor activity [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4975. doi:10.1158/1538-7445.AM2017-4975

Collaboration


Dive into the Yvette Chin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Henry Marks

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rozario Thomas

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edi Brogi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge