Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvonne Reiss is active.

Publication


Featured researches published by Yvonne Reiss.


Nature Medicine | 2006

Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation

Ulrike Fiedler; Yvonne Reiss; Marion Scharpfenecker; Verena Grunow; Stefanie Koidl; Gavin Thurston; Nicholas W. Gale; Martin Witzenrath; Simone Rosseau; Norbert Suttorp; Astrid Sobke; Matthias Herrmann; Klaus T. Preissner; Peter Vajkoczy; Hellmut G. Augustin

The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the receptor tyrosine kinase Tie-2 (refs. 1,2). Paracrine Ang-1–mediated activation of Tie-2 acts as a regulator of vessel maturation and vascular quiescence. In turn, the antagonistic ligand Ang-2 acts by an autocrine mechanism and is stored in endothelial Weibel-Palade bodies from where it can be rapidly released upon stimulation. The rapid release of Ang-2 implies functions of the angiopoietin-Tie system beyond its established role during vascular morphogenesis as a regulator of rapid vascular responses. Here we show that mice deficient in Ang-2 (encoded by the gene Angpt2) cannot elicit an inflammatory response in thioglycollate-induced or Staphylococcus aureus–induced peritonitis, or in the dorsal skinfold chamber model. Recombinant Ang-2 restores the inflammation defect in Angpt2−/− mice. Intravital microscopy showed normal TNF-α–induced leukocyte rolling in the vasculature of Angpt2−/−mice, but rolling cells did not firmly adhere to activated endothelium. Cellular experiments showed that Ang-2 promotes adhesion by sensitizing endothelial cells toward TNF-α and modulating TNF-α–induced expression of endothelial cell adhesion molecules. Together, these findings identify Ang-2 as an autocrine regulator of endothelial cell inflammatory responses. Ang-2 thereby acts as a switch of vascular responsiveness exerting a permissive role for the activities of proinflammatory cytokines.


Journal of Cell Science | 2005

The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism.

Marion Scharpfenecker; Ulrike Fiedler; Yvonne Reiss; Hellmut G. Augustin

The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the endothelial receptor tyrosine kinase Tie-2, which controls vascular assembly and endothelial quiescence. The largely complementary phenotypes of Ang-1-deficient mice and Ang-2-overexpressing mice have led to an antagonistic model in which Ang-1 acts as Tie-2-activating agonist and Ang-2 acts as a Tie-2-inhibiting antagonist. To date, no mechanistic equivalent of the antagonistic Ang-1/Ang-2 model has been established and the mechanisms of Ang-2 function in particular remain mysterious. We have studied the effector functions of Ang-1 and Ang-2 on quiescent endothelial cells using a three-dimensional co-culture model of endothelial cells and smooth-muscle cells. Endothelial-cell monolayer integrity in this model is dependent on Tie-2 signaling, as evidenced by detaching endothelial cells following exposure to the small molecular weight Tie-2 inhibitor A-422885.66, which cannot be overcome by exogenous Ang-1. Accordingly, exogenous Ang-2 rapidly destabilizes the endothelial layer, which can be observed within 30-60 minutes and leads to prominent endothelial-cell detachment within 4 hours. Exogenous Ang-2-mediated endothelial-cell detachment can be rescued by Ang-1, soluble Tie-2 and vascular endothelial growth factor. Similar findings were obtained in an umbilical-vein explant model. Ang-2 is mainly produced by endothelial cells and therefore acts primarily in an autocrine manner. Thus, stimulated release of endogenous Ang-2 or overexpression of Ang-2 in endothelial cells perturbs co-culture spheroid integrity, which can be rescued by exogenous Ang-1 and vascular endothelial growth factor. However, autocrine Ang-2-mediated endothelial-cell detachment cannot be blocked by soluble Tie-2. Taken together, the data demonstrate for the first time the antagonistic Ang-1/Ang-2 concept in a defined cellular model and identify Ang-2 as a rapidly acting autocrine regulator of the endothelium that acts through an internal autocrine loop mechanism.


Blood | 2010

Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells

Carmen Doebele; Angelika Bonauer; Ariane Fischer; Alexander Scholz; Yvonne Reiss; Carmen Urbich; Wolf-Karsten Hofmann; Andreas M. Zeiher; Stefanie Dimmeler

MicroRNAs are endogenously expressed small noncoding RNAs that regulate gene expression on the posttranscriptional level. The miR-17-92 cluster (encoding miR-17, -18a, -19a/b, -20a, and miR-92a) is highly expressed in tumor cells and is up-regulated by ischemia. Whereas miR-92a was recently identified as negative regulator of angiogenesis, the specific functions of the other members of the cluster are less clear. Here we demonstrate that overexpression of miR-17, -18a, -19a, and -20a significantly inhibited 3-dimensional spheroid sprouting in vitro, whereas inhibition of miR-17, -18a, and -20a augmented endothelial cell sprout formation. Inhibition of miR-17 and miR-20a in vivo using antagomirs significantly increased the number of perfused vessels in Matrigel plugs, whereas antagomirs that specifically target miR-18a and miR-19a were less effective. However, systemic inhibition of miR-17/20 did not affect tumor angiogenesis. Further mechanistic studies showed that miR-17/20 targets several proangiogenic genes. Specifically, Janus kinase 1 was shown to be a direct target of miR-17. In summary, we show that miR-17/20 exhibit a cell-intrinsic antiangiogenic activity in endothelial cells. Inhibition of miR-17/20 specifically augmented neovascularization of Matrigel plugs but did not affect tumor angiogenesis indicating a context-dependent regulation of angiogenesis by miR-17/20 in vivo.


European Journal of Immunology | 1998

T cell interaction with ICAM-1-deficient endothelium in vitro: essential role for ICAM-1 and ICAM-2 in transendothelial migration of T cells

Yvonne Reiss; Gabi Hoch; Urban Deutsch; Britta Engelhardt

Transendothelial migration is a crucial step in the complex process of lymphocyte extravasation during lymphocyte homing, immunosurveillance and inflammation. However, little is known about the precise role of cell adhesion molecules (CAM) involved in this particular event. To define the CAM involved in T cell adhesion versus transendothelial migration, we have previously established an in vitro transendothelial migration system using mouse T cells and mouse endothelioma cells. We demonstrate here that, using ICAM‐1‐deficient endothelioma cells derived from ICAM‐1 mutant mice, transendothelial migration of T cells was inhibited to a much greater extent when compared to migration across wild‐type cells treated with a blocking anti‐ICAM‐1 monoclonal antibody. This unexpected result was confirmed by a rescue experiment using retroviral transfer of wild‐type ICAM‐1 into ICAM‐1‐deficient endothelial cells. Additional experiments showed that, in the absence of functional ICAM‐1, only ICAM‐2 was involved in transendothelial migration, but not PECAM‐1, VCAM‐1, or E‐selectin. Taking this novel approach, we show that ICAM‐1 and ICAM‐2 are essential for transendothelial migration of T cells.


Cancer Research | 2008

Flt-1 Signaling in Macrophages Promotes Glioma Growth In vivo

Mark Kerber; Yvonne Reiss; Anke Wickersheim; Manfred Jugold; Fabian Kiessling; Matthias Heil; Vadim Tchaikovski; Johannes Waltenberger; Karl H. Plate; Marcia Machein

Several lines of evidence indicate that Flt-1, a fms-like tyrosine kinase receptor, which binds to vascular endothelial growth factor (VEGF)-A, VEGF-B, and PlGF, is a positive regulator of angiogenesis in the context of tumor growth and metastasis. However, the molecular basis of its action is still not clear. Besides endothelial cells, Flt-1 is also expressed by other different cell types, including myeloid hematopoeitic cells (monocytes and macrophages). To examine the functions of Flt-1 expressed by bone marrow-derived myeloid cells in supporting tumor growth and angiogenesis, Flt-1 tyrosine kinase-deficient (Flt-1 TK-/-) bone marrow cells were transplanted into lethally irradiated syngeneic recipients. After hematopoietic reconstitution, we orthotopically implanted syngeneic wild-type glioma cells or glioma cells overexpressing either VEGF(164) or PlGF-2. Loss of Flt-1 signaling in bone marrow-derived myeloid cells led to a significant decrease in tumor volume and vascularization in gliomas. VEGF but not PlGF overexpressed by glioma cells restored the tumor growth rate in Flt-1 TK-/- bone marrow chimera. VEGF and PlGF overexpression by tumor cells induced an accumulation of bone marrow-derived myeloid cells into tumor tissue. This infiltration was decreased in tumors grown in Flt-1 TK-/- bone marrow chimeras. When investigating chemokines and growth factors involved in myeloid cell recruitment, we determined elevated SDF-1/CXCL12 levels in VEGF- and PlGF-overexpressing tumors. Collectively, these results suggest that Flt-1 signaling in myeloid cells is essential to amplify the angiogenic response and to promote glioma growth.


Immunity | 1999

Prolonged Eosinophil Accumulation in Allergic Lung Interstitium of ICAM-2-Deficient Mice Results in Extended Hyperresponsiveness

Nicole Gerwin; Jose-Angel Gonzalo; Clare Lloyd; Anthony J. Coyle; Yvonne Reiss; Naheed Banu; Baoping Wang; Hong Xu; Hava Avraham; Britta Engelhardt; Timothy A. Springer; Jose Carlos Gutierrez-Ramos

ICAM-2-deficient mice exhibit prolonged accumulation of eosinophils in lung interstitium concomitant with a delayed increase in eosinophil numbers in the airway lumen during the development of allergic lung inflammation. The ICAM-2-dependent increased and prolonged accumulation of eosinophils in lung interstitium results in prolonged, heightened airway hyperresponsiveness. These findings reveal an essential role for ICAM-2 in the development of the inflammatory and respiratory components of allergic lung disease. This phenotype is caused by the lack of ICAM-2 expression on non-hematopoietic cells. ICAM-2 deficiency on endothelial cells causes reduced eosinophil transmigration in vitro. ICAM-2 is not essential for lymphocyte homing or the development of leukocytes, with the exception of megakaryocyte progenitors, which are significantly reduced.


Journal of Clinical Investigation | 2009

Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice

Sulochana S. Bhandarkar; Marisa Jaconi; Levi Fried; Michael Y. Bonner; Benjamin Lefkove; Baskaran Govindarajan; Betsy N. Perry; Ravi Parhar; Jamie MacKelfresh; Allie Sohn; Michael Stouffs; Ulla G. Knaus; George D. Yancopoulos; Yvonne Reiss; Andrew V. Benest; Hellmut G. Augustin; Jack L. Arbiser

Hemangiomas are the most common type of tumor in infants. As they are endothelial cell-derived neoplasias, their growth can be regulated by the autocrine-acting Tie2 ligand angiopoietin 2 (Ang2). Using an experimental model of human hemangiomas, in which polyoma middle T-transformed brain endothelial (bEnd) cells are grafted subcutaneously into nude mice, we compared hemangioma growth originating from bEnd cells derived from wild-type, Ang2+/-, and Ang2-/- mice. Surprisingly, Ang2-deficient bEnd cells formed endothelial tumors that grew rapidly and were devoid of the typical cavernous architecture of slow-growing Ang2-expressing hemangiomas, while Ang2+/- cells were greatly impaired in their in vivo growth. Gene array analysis identified a strong downregulation of NADPH oxidase 4 (Nox4) in Ang2+/- cells. Correspondingly, lentiviral silencing of Nox4 in an Ang2-sufficient bEnd cell line decreased Ang2 mRNA levels and greatly impaired hemangioma growth in vivo. Using a structure-based approach, we identified fulvenes as what we believe to be a novel class of Nox inhibitors. We therefore produced and began the initial characterization of fulvenes as potential Nox inhibitors, finding that fulvene-5 efficiently inhibited Nox activity in vitro and potently inhibited hemangioma growth in vivo. In conclusion, the present study establishes Nox4 as a critical regulator of hemangioma growth and identifies fulvenes as a potential class of candidate inhibitor to therapeutically interfere with Nox function.


Journal of Immunology | 2011

Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion

Seth B. Coffelt; Yung-Yi Chen; Munitta Muthana; Abigail F. Welford; Andrea Tal; Alexander Scholz; Karl H. Plate; Yvonne Reiss; Craig Murdoch; Michelle De Palma; Claire E. Lewis

Angiopoietin 2 (ANGPT2) is a proangiogenic cytokine whose expression is often upregulated by endothelial cells in tumors. Expression of its receptor, TIE2, defines a highly proangiogenic subpopulation of myeloid cells in circulation and tumors called TIE2-expressing monocytes/macrophages (TEMs). Genetic depletion of TEMs markedly reduces tumor angiogenesis in various tumor models, emphasizing their essential role in driving tumor progression. Previously, we demonstrated that ANGPT2 augments the expression of various proangiogenic genes, the potent immunosuppressive cytokine, IL-10, and a chemokine for regulatory T cells (Tregs), CCL17 by TEMs in vitro. We now show that TEMs also express higher levels of IL-10 than TIE2− macrophages in tumors and that ANGPT2-stimulated release of IL-10 by TEMs suppresses T cell proliferation, increases the ratio of CD4+ T cells to CD8+ T cells, and promotes the expansion of CD4+CD25highFOXP3+ Tregs. Furthermore, syngeneic murine tumors expressing high levels of ANGPT2 contained not only high numbers of TEMs but also increased numbers of Tregs, whereas genetic depletion of tumor TEMs resulted in a marked reduction in the frequency of Tregs in tumors. Taken together, our data suggest that ANGPT2-stimulated TEMs represent a novel, potent immunosuppressive force in tumors.


Brain Pathology | 2006

The Role of Angiopoietins During Angiogenesis in Gliomas

Yvonne Reiss; Marcia Machein; Karl H. Plate

The formation of new blood vessels plays an important role in human disease development and progression. For instance, it is well established that the growth of most cancers critically depends on the supply of nutrition and oxygen by newly recruited blood vessels. Similarly, malignant gliomas, the most common primary brain tumors occurring in humans are highly dependent on angiogenesis. In recent years, there has been tremendous effort to uncover the molecular mechanisms that drive blood vessel growth in adult tissues, especially during cancer progression. Vascular endothelial growth factor (VEGF) and other morphogens, such as angiopoietins and ephrins have been shown to be critically involved in the formation of new blood vessels during both developmental and pathological angiogenesis as evidenced by genetic studies in mice. In this review, we focus on angiopoietins, a family of growth factor ligands binding to tie tyrosine kinase receptors with emphasis on their functional consequences during the growth and progression of experimental tumors and malignant human gliomas.


Circulation Research | 2007

Angiopoietin-2 Impairs Revascularization After Limb Ischemia

Yvonne Reiss; Jasmin Droste; Matthias Heil; Silvia Tribulova; Mirko H. H. Schmidt; Wolfgang Schaper; Daniel J. Dumont; Karl H. Plate

Angiopoietins play important roles in the formation of neovessels and complex vascular networks. Angiopoietin (Ang)-1 and Ang-2 belong to a family of growth factors that display opposing effects on the activation of Tie2 (tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2). Endothelial Ang-2 expression is associated with vessel destabilization and regulates a balance between vascular regression and growth. To elucidate, in particular, the role of Ang-2 after arterial artery occlusion in the mouse limb, we applied a transgenic animal model with targeted Ang-2 expression in endothelial cells. We show here that restoration of blood flow in Ang-2:Tie1 transgenic mice is dramatically impaired when Ang-2 expression is induced in the vasculature. The defective restoration of perfusion in Ang-2 transgenic mice is evidenced by reduced collateral artery growth, which typically occurs to compensate for flow deficits after occlusion of the large conductance artery. Furthermore, reduced movement capacities and higher incidents of necrosis are consequently observed in the transgenic limbs as compared with controls. Mechanistically, the observed effects are attributed to defective smooth muscle cell recruitment in Ang-2 transgenic mice. Moreover, distinct Ang-2 levels in the genetically modified animals clearly correlated with the magnitude of reduced perfusion. In conclusion, our studies define Ang-2 as an important molecule for the progression of collateral artery growth and angiogenesis during ischemia and suggest precise Ang-2 dosage activities to accomplish blood vessel growth.

Collaboration


Dive into the Yvonne Reiss's collaboration.

Top Co-Authors

Avatar

Karl H. Plate

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Alexander Scholz

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Hellmut G. Augustin

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Michel Mittelbronn

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick N. Harter

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Andrea Tal

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Stefan Liebner

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge