Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zachary A. Bornholdt is active.

Publication


Featured researches published by Zachary A. Bornholdt.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Structures of protective antibodies reveal sites of vulnerability on Ebola virus

Charles D. Murin; Marnie L. Fusco; Zachary A. Bornholdt; Xiangguo Qiu; Gene G. Olinger; Larry Zeitlin; Gary P. Kobinger; Andrew B. Ward; Erica Ollmann Saphire

Significance Ebola virus causes lethal hemorrhagic fever, and the current 2014 outbreak in western Africa is the largest on record to date. No vaccines or therapeutics are yet approved for human use. Therapeutic antibody cocktails, however, have shown efficacy against otherwise lethal Ebola virus infection and show significant promise for eventual human use. Here we provide structures of every mAb in the ZMapp cocktail, as well as additional antibodies from the MB-003 and ZMAb cocktails from which ZMapp was derived, each in complex with the Ebola glycoprotein. The set of structures illustrates sites of vulnerability of Ebola virus, and importantly, provides a roadmap to determine their mechanism of protection and for ongoing selection and improvement of immunotherapeutic cocktails against the filoviruses. Ebola virus (EBOV) and related filoviruses cause severe hemorrhagic fever, with up to 90% lethality, and no treatments are approved for human use. Multiple recent outbreaks of EBOV and the likelihood of future human exposure highlight the need for pre- and postexposure treatments. Monoclonal antibody (mAb) cocktails are particularly attractive candidates due to their proven postexposure efficacy in nonhuman primate models of EBOV infection. Two candidate cocktails, MB-003 and ZMAb, have been extensively evaluated in both in vitro and in vivo studies. Recently, these two therapeutics have been combined into a new cocktail named ZMapp, which showed increased efficacy and has been given compassionately to some human patients. Epitope information and mechanism of action are currently unknown for most of the component mAbs. Here we provide single-particle EM reconstructions of every mAb in the ZMapp cocktail, as well as additional antibodies from MB-003 and ZMAb. Our results illuminate key and recurring sites of vulnerability on the EBOV glycoprotein and provide a structural rationale for the efficacy of ZMapp. Interestingly, two of its components recognize overlapping epitopes and compete with each other for binding. Going forward, this work now provides a basis for strategic selection of next-generation antibody cocktails against Ebola and related viruses and a model for predicting the impact of ZMapp on potential escape mutations in ongoing or future Ebola outbreaks.


Cell | 2013

Structural Rearrangement of Ebola Virus VP40 Begets Multiple Functions in the Virus Life Cycle.

Zachary A. Bornholdt; Takeshi Noda; Dafna M. Abelson; Peter Halfmann; Malcolm R. Wood; Yoshihiro Kawaoka; Erica Ollmann Saphire

Proteins, particularly viral proteins, can be multifunctional, but the mechanisms behind multifunctionality are not fully understood. Here, we illustrate through multiple crystal structures, biochemistry, and cellular microscopy that VP40 rearranges into different structures, each with a distinct function required for the ebolavirus life cycle. A butterfly-shaped VP40 dimer traffics to the cellular membrane. Once there, electrostatic interactions trigger rearrangement of the polypeptide into a linear hexamer. These hexamers construct a multilayered, filamentous matrix structure that is critical for budding and resembles tomograms of authentic virions. A third structure of VP40, formed by a different rearrangement, is not involved in virus assembly but instead uniquely binds RNA to regulate viral transcription inside infected cells. These results provide a functional model for ebolavirus matrix assembly and the other roles of VP40 in the virus life cycle and demonstrate how a single wild-type, unmodified polypeptide can assemble into different structures for different functions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression

Christopher R. Kimberlin; Zachary A. Bornholdt; Sheng Li; Virgil L. Woods; Ian J. MacRae; Erica Ollmann Saphire

Ebolavirus causes a severe hemorrhagic fever and is divided into five distinct species, of which Reston ebolavirus is uniquely nonpathogenic to humans. Disease caused by ebolavirus is marked by early immunosuppression of innate immune signaling events, involving silencing and sequestration of double-stranded RNA (dsRNA) by the viral protein VP35. Here we present unbound and dsRNA-bound crystal structures of the dsRNA-binding domain of Reston ebolavirus VP35. The structures show that VP35 forms an unusual, asymmetric dimer on dsRNA binding, with each of the monomers binding dsRNA in a different way: one binds the backbone whereas the other caps the terminus. Additional SAXS, DXMS, and dsRNA-binding experiments presented here support a model of cooperative dsRNA recognition in which binding of the first monomer assists binding of the next monomer of the oligomeric VP35 protein. This work illustrates how ebolavirus VP35 could mask key recognition sites of molecules such as RIG-I, MDA-5, and Dicer to silence viral dsRNA in infection.


Science | 2016

Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak

Zachary A. Bornholdt; Hannah L. Turner; Charles D. Murin; Wen Li; Devin Sok; Colby A. Souders; Ashley E. Piper; Arthur J. Goff; Joshua D. Shamblin; Suzanne E. Wollen; Thomas R. Sprague; Marnie L. Fusco; Kathleen B.J. Pommert; Lisa A. Cavacini; Heidi L. Smith; Mark S. Klempner; Keith A. Reimann; Eric Krauland; Tillman U. Gerngross; Karl Dane Wittrup; Erica Ollmann Saphire; Dennis R. Burton; Pamela J. Glass; Andrew B. Ward; Laura M. Walker

Profiling the antibody response to Ebola The recent Ebola virus outbreak in West Africa illustrates the need not only for a vaccine but for potential therapies, too. One promising therapy is monoclonal antibodies that target Ebolas membrane-anchored glycoprotein (GP). Bornholdt et al. isolated and characterized 349 antibodies from a survivor of the 2014 outbreak. A large fraction showed some neutralizing activity and several were quite potent. Structural analysis revealed an important site of vulnerability on the membrane stalk region of GP. Antibodies targeting this area were therapeutically effective in Ebola virus–infected mice. Science, this issue p. 1078 Antibodies from a survivor of the 2014 outbreak bind to the membrane proximal region of the Ebola virus glycoprotein. Antibodies targeting the Ebola virus surface glycoprotein (EBOV GP) are implicated in protection against lethal disease, but the characteristics of the human antibody response to EBOV GP remain poorly understood. We isolated and characterized 349 GP-specific monoclonal antibodies (mAbs) from the peripheral B cells of a convalescent donor who survived the 2014 EBOV Zaire outbreak. Remarkably, 77% of the mAbs neutralize live EBOV, and several mAbs exhibit unprecedented potency. Structures of selected mAbs in complex with GP reveal a site of vulnerability located in the GP stalk region proximal to the viral membrane. Neutralizing antibodies targeting this site show potent therapeutic efficacy against lethal EBOV challenge in mice. The results provide a framework for the design of new EBOV vaccine candidates and immunotherapies.


Cell | 2015

Structural basis for Marburg virus neutralization by a cross-reactive human antibody.

Takao Hashiguchi; Marnie L. Fusco; Zachary A. Bornholdt; Jeffrey E. Lee; Andrew I. Flyak; Rei Matsuoka; Daisuke Kohda; Yusuke Yanagi; Michal Hammel; James E. Crowe; Erica Ollmann Saphire

The filoviruses, including Marburg and Ebola, express a single glycoprotein on their surface, termed GP, which is responsible for attachment and entry of target cells. Filovirus GPs differ by up to 70% in protein sequence, and no antibodies are yet described that cross-react among them. Here, we present the 3.6 Å crystal structure of Marburg virus GP in complex with a cross-reactive antibody from a human survivor, and a lower resolution structure of the antibody bound to Ebola virus GP. The antibody, MR78, recognizes a GP1 epitope conserved across the filovirus family, which likely represents the binding site of their NPC1 receptor. Indeed, MR78 blocks binding of the essential NPC1 domain C. These structures and additional small-angle X-ray scattering of mucin-containing MARV and EBOV GPs suggest why such antibodies were not previously elicited in studies of Ebola virus, and provide critical templates for development of immunotherapeutics and inhibitors of entry.


Cell | 2015

Mechanism of Human Antibody-Mediated Neutralization of Marburg Virus

Andrew I. Flyak; Philipp A. Ilinykh; Charles D. Murin; Tania Garron; Xiaoli Shen; Marnie L. Fusco; Takao Hashiguchi; Zachary A. Bornholdt; James C. Slaughter; Gopal Sapparapu; Curtis Klages; Thomas G. Ksiazek; Andrew B. Ward; Erica Ollmann Saphire; Alexander Bukreyev; James E. Crowe

The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition.


PLOS Pathogens | 2012

Marburg Virus VP35 Can Both Fully Coat the Backbone and Cap the Ends of dsRNA for Interferon Antagonism.

Shridhar Bale; Jean-Philippe Julien; Zachary A. Bornholdt; Christopher R. Kimberlin; Peter Halfmann; Michelle Zandonatti; John Kunert; Gerard Kroon; Yoshihiro Kawaoka; Ian J. MacRae; Ian A. Wilson; Erica Ollmann Saphire

Filoviruses, including Marburg virus (MARV) and Ebola virus (EBOV), cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (ds)RNA-binding domain (RBD) of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.


Cell | 2017

Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses

Anna Z. Wec; Andrew S. Herbert; Charles D. Murin; Elisabeth K. Nyakatura; Dafna M. Abelson; J. Maximilian Fels; Shihua He; Rebekah M. James; Marc Antoine de La Vega; Wenjun Zhu; Russell R. Bakken; Eileen Goodwin; Hannah L. Turner; Rohit K. Jangra; Larry Zeitlin; Xiangguo Qiu; Jonathan R. Lai; Laura M. Walker; Andrew B. Ward; John M. Dye; Kartik Chandran; Zachary A. Bornholdt

Experimental monoclonal antibody (mAb) therapies have shown promise for treatment of lethal Ebola virus (EBOV) infections, but their species-specific recognition of the viral glycoprotein (GP) has limited their use against other divergent ebolaviruses associated with human disease. Here, we mined the human immune response to natural EBOV infection and identified mAbs with exceptionally potent pan-ebolavirus neutralizing activity and protective efficacy against three virulent ebolaviruses. These mAbs recognize an inter-protomer epitope in the GP fusion loop, a critical and conserved element of the viral membrane fusion machinery, and neutralize viral entry by targeting a proteolytically primed, fusion-competent GP intermediate (GPCL) generated in host cell endosomes. Only a few somatic hypermutations are required for broad antiviral activity, and germline-approximating variants display enhanced GPCL recognition, suggesting that such antibodies could be elicited more efficiently with suitably optimized GP immunogens. Our findings inform the development of both broadly effective immunotherapeutics and vaccines against filoviruses.


Mbio | 2016

Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies

Zachary A. Bornholdt; Esther Ndungo; Marnie L. Fusco; Shridhar Bale; Andrew I. Flyak; James E. Crowe; Kartik Chandran; Erica Ollmann Saphire

ABSTRACT The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. IMPORTANCE Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs.


Science | 2016

A "Trojan horse" bispecific antibody strategy for broad protection against ebolaviruses.

Anna Z. Wec; Elisabeth K. Nyakatura; Andrew S. Herbert; Katie A. Howell; Frederick W. Holtsberg; Russell R. Bakken; Eva Mittler; John R. Christin; Sergey Shulenin; Rohit K. Jangra; Sushma Bharrhan; Ana I. Kuehne; Zachary A. Bornholdt; Andrew I. Flyak; Erica Ollmann Saphire; James E. Crowe; M. Javad Aman; John M. Dye; Jonathan R. Lai; Kartik Chandran

Treating Ebola with a Trojan horse The recent major Ebola virus outbreak in West Africa high-lighted the need for effective therapeutics against this and other filoviruses. Neutralizing ebolaviruses with antibodies is a challenge because the viruses bind their entry receptor, NPC1, inside the cell within endosomes rather than on the cell surface. Furthermore, enzymes in endosomes cleave the Ebola virus surface glycoprotein (GP) to reveal its receptor binding site. Wec et al. now report a bispecific antibody strategy targeting all known ebolaviruses that overcomes this problem (see the Perspective by Labrijn and Parren). They coupled an antibody specific for a conserved, surface-exposed epitope of GP to antibodies that recognize either NPC1 or the NPC1 binding site on GP. Treating mice therapeutically with these antibodies allowed them to survive otherwise lethal ebolavirus infection. Science, this issue p. 350; see also p. 284 Bispecific antibodies show therapeutic efficacy against ebolaviruses in mice. There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor–binding site are coupled to a mAb against a conserved, surface-exposed GP epitope. Bispecific antibodies, but not parent mAbs, neutralized all known ebolaviruses by coopting viral particles themselves for endosomal delivery and conferred postexposure protection against multiple ebolaviruses in mice. Such “Trojan horse” bispecific antibodies have potential as broad antifilovirus immunotherapeutics.

Collaboration


Dive into the Zachary A. Bornholdt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dafna M. Abelson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Marnie L. Fusco

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew B. Ward

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Charles D. Murin

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kartik Chandran

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Peter Halfmann

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew S. Herbert

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge