Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dafna M. Abelson is active.

Publication


Featured researches published by Dafna M. Abelson.


Cell | 2013

Structural Rearrangement of Ebola Virus VP40 Begets Multiple Functions in the Virus Life Cycle.

Zachary A. Bornholdt; Takeshi Noda; Dafna M. Abelson; Peter Halfmann; Malcolm R. Wood; Yoshihiro Kawaoka; Erica Ollmann Saphire

Proteins, particularly viral proteins, can be multifunctional, but the mechanisms behind multifunctionality are not fully understood. Here, we illustrate through multiple crystal structures, biochemistry, and cellular microscopy that VP40 rearranges into different structures, each with a distinct function required for the ebolavirus life cycle. A butterfly-shaped VP40 dimer traffics to the cellular membrane. Once there, electrostatic interactions trigger rearrangement of the polypeptide into a linear hexamer. These hexamers construct a multilayered, filamentous matrix structure that is critical for budding and resembles tomograms of authentic virions. A third structure of VP40, formed by a different rearrangement, is not involved in virus assembly but instead uniquely binds RNA to regulate viral transcription inside infected cells. These results provide a functional model for ebolavirus matrix assembly and the other roles of VP40 in the virus life cycle and demonstrate how a single wild-type, unmodified polypeptide can assemble into different structures for different functions.


Nature Structural & Molecular Biology | 2011

A shared structural solution for neutralizing ebolaviruses

João M. Dias; Ana I. Kuehne; Dafna M. Abelson; Shridhar Bale; Anthony C. Wong; Peter Halfmann; Majidat Muhammad; Marnie L. Fusco; Samantha E. Zak; Eugene Kang; Yoshihiro Kawaoka; Kartik Chandran; John M. Dye; Erica Ollmann Saphire

Sudan virus (genus Ebolavirus) is lethal, yet no monoclonal antibody is known to neutralize it. We here describe antibody 16F6 that neutralizes Sudan virus and present its structure bound to the trimeric viral glycoprotein. Unexpectedly, the 16F6 epitope overlaps that of KZ52, the only other antibody against the GP1,2 core to be visualized to date. Furthermore, both antibodies against this crucial epitope bridging GP1–GP2 neutralize at a post-internalization step—probably fusion.


PLOS Neglected Tropical Diseases | 2011

Ebola Virus Glycoprotein Needs an Additional Trigger, beyond Proteolytic Priming for Membrane Fusion

Shridhar Bale; Tong Liu; Sheng Li; Yuhao Wang; Dafna M. Abelson; Marnie L. Fusco; Virgil L. Woods; Erica Ollmann Saphire

Background Ebolavirus belongs to the family filoviridae and causes severe hemorrhagic fever in humans with 50–90% lethality. Detailed understanding of how the viruses attach to and enter new host cells is critical to development of medical interventions. The virus displays a trimeric glycoprotein (GP1,2) on its surface that is solely responsible for membrane attachment, virus internalization and fusion. GP1,2 is expressed as a single peptide and is cleaved by furin in the host cells to yield two disulphide-linked fragments termed GP1 and GP2 that remain associated in a GP1,2 trimeric, viral surface spike. After entry into host endosomes, GP1,2 is enzymatically cleaved by endosomal cathepsins B and L, a necessary step in infection. However, the functional effects of the cleavage on the glycoprotein are unknown. Principal Findings We demonstrate by antibody binding and Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS) of glycoproteins from two different ebolaviruses that although enzymatic priming of GP1,2 is required for fusion, the priming itself does not initiate the required conformational changes in the ectodomain of GP1,2. Further, ELISA binding data of primed GP1,2 to conformational antibody KZ52 suggests that the low pH inside the endosomes also does not trigger dissociation of GP1 from GP2 to effect membrane fusion. Significance The results reveal that the ebolavirus GP1,2 ectodomain remains in the prefusion conformation upon enzymatic cleavage in low pH and removal of the glycan cap. The results also suggest that an additional endosomal trigger is necessary to induce the conformational changes in GP1,2 and effect fusion. Identification of this trigger will provide further mechanistic insights into ebolavirus infection.


Cell Reports | 2015

Assembly of the Ebola Virus Nucleoprotein from a Chaperoned VP35 Complex

Robert N. Kirchdoerfer; Dafna M. Abelson; Sheng Li; Malcolm R. Wood; Erica Ollmann Saphire

Ebolavirus NP oligomerizes into helical filaments found at the core of the virion, encapsidates the viral RNA genome, and serves as a scaffold for additional viral proteins within the viral nucleocapsid. We identified a portion of the phosphoprotein homolog VP35 that binds with high affinity to nascent NP and regulates NP assembly and viral genome binding. Removal of the VP35 peptide leads to NP self-assembly via its N-terminal oligomerization arm. NP oligomerization likely causes a conformational change between the NP N- and C-terminal domains, facilitating RNA binding. These functional data are complemented by crystal structures of the NP°-VP35 complex at 2.4 Å resolution. The interactions between NP and VP35 illuminated by these structures are conserved among filoviruses and provide key targets for therapeutic intervention.


Cell | 2017

Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses

Anna Z. Wec; Andrew S. Herbert; Charles D. Murin; Elisabeth K. Nyakatura; Dafna M. Abelson; J. Maximilian Fels; Shihua He; Rebekah M. James; Marc Antoine de La Vega; Wenjun Zhu; Russell R. Bakken; Eileen Goodwin; Hannah L. Turner; Rohit K. Jangra; Larry Zeitlin; Xiangguo Qiu; Jonathan R. Lai; Laura M. Walker; Andrew B. Ward; John M. Dye; Kartik Chandran; Zachary A. Bornholdt

Experimental monoclonal antibody (mAb) therapies have shown promise for treatment of lethal Ebola virus (EBOV) infections, but their species-specific recognition of the viral glycoprotein (GP) has limited their use against other divergent ebolaviruses associated with human disease. Here, we mined the human immune response to natural EBOV infection and identified mAbs with exceptionally potent pan-ebolavirus neutralizing activity and protective efficacy against three virulent ebolaviruses. These mAbs recognize an inter-protomer epitope in the GP fusion loop, a critical and conserved element of the viral membrane fusion machinery, and neutralize viral entry by targeting a proteolytically primed, fusion-competent GP intermediate (GPCL) generated in host cell endosomes. Only a few somatic hypermutations are required for broad antiviral activity, and germline-approximating variants display enhanced GPCL recognition, suggesting that such antibodies could be elicited more efficiently with suitably optimized GP immunogens. Our findings inform the development of both broadly effective immunotherapeutics and vaccines against filoviruses.


Virulence | 2012

The ebolavirus VP24 interferon antagonist: Know your enemy

Adrianna P. P. Zhang; Dafna M. Abelson; Zachary A. Bornholdt; Tong Liu; Virgil L. Woods; Erica Ollmann Saphire

Suppression during the early phases of the immune system often correlates directly with a fatal outcome for the host. The ebolaviruses, some of the most lethal viruses known, appear to cripple initial stages of the host defense network via multiple distinct paths. Two of the eight viral proteins are critical for immunosuppression. One of these proteins is VP35, which binds double-stranded RNA and antagonizes several antiviral signaling pathways.1,2 The other protein is VP24, which binds transporter molecules to prevent STAT1 translocation.3 A more recent discovery is that VP24 also binds STAT1 directly,4 suggesting that VP24 may operate in at least two separate branches of the interferon pathway. New crystal structures of VP24 derived from pathogenic and nonpathogenic ebolaviruses reveal its novel, pyramidal fold, upon which can be mapped sites required for virulence and for STAT1 binding. These structures of VP24, and new information about its direct binding to STAT1, provide avenues by which we may explore its many roles in the viral life cycle, and reasons for differences in pathogenesis among the ebolaviruses.


Viral Immunology | 2015

Multiple Circulating Infections Can Mimic the Early Stages of Viral Hemorrhagic Fevers and Possible Human Exposure to Filoviruses in Sierra Leone Prior to the 2014 Outbreak

Matthew L. Boisen; John S. Schieffelin; Augustine Goba; Darin Oottamasathien; Abigail B. Jones; Jeffrey G. Shaffer; Kathryn M. Hastie; Jessica N. Hartnett; Mambu Momoh; Mohammed Fullah; Michael Gabiki; Sidiki Safa; Michelle Zandonatti; Marnie L. Fusco; Zach Bornholdt; Dafna M. Abelson; Stephen K. Gire; Kristian G. Andersen; Ridhi Tariyal; Mathew Stremlau; Robert W. Cross; Joan B. Geisbert; Kelly R. Pitts; Thomas W. Geisbert; Peter Kulakoski; Russell B. Wilson; Lee A. Henderson; Pardis C. Sabeti; Donald S. Grant; Robert F. Garry

Lassa fever (LF) is a severe viral hemorrhagic fever caused by Lassa virus (LASV). The LF program at the Kenema Government Hospital (KGH) in Eastern Sierra Leone currently provides diagnostic services and clinical care for more than 500 suspected LF cases per year. Nearly two-thirds of suspected LF patients presenting to the LF Ward test negative for either LASV antigen or anti-LASV immunoglobulin M (IgM), and therefore are considered to have a non-Lassa febrile illness (NLFI). The NLFI patients in this study were generally severely ill, which accounts for their high case fatality rate of 36%. The current studies were aimed at determining possible causes of severe febrile illnesses in non-LF cases presenting to the KGH, including possible involvement of filoviruses. A seroprevalence survey employing commercial enzyme-linked immunosorbent assay tests revealed significant IgM and IgG reactivity against dengue virus, chikungunya virus, West Nile virus (WNV), Leptospira, and typhus. A polymerase chain reaction-based survey using sera from subjects with acute LF, evidence of prior LASV exposure, or NLFI revealed widespread infection with Plasmodium falciparum malaria in febrile patients. WNV RNA was detected in a subset of patients, and a 419 nt amplicon specific to filoviral L segment RNA was detected at low levels in a single patient. However, 22% of the patients presenting at the KGH between 2011 and 2014 who were included in this survey registered anti-Ebola virus (EBOV) IgG or IgM, suggesting prior exposure to this agent. The 2014 Ebola virus disease (EVD) outbreak is already the deadliest and most widely dispersed outbreak of its kind on record. Serological evidence reported here for possible human exposure to filoviruses in Sierra Leone prior to the current EVD outbreak supports genetic analysis that EBOV may have been present in West Africa for some time prior to the 2014 outbreak.


Acta Crystallographica Section D-biological Crystallography | 2009

Techniques and tactics used in determining the structure of the trimeric ebolavirus glycoprotein

Jeffrey E. Lee; Marnie L. Fusco; Dafna M. Abelson; Ann J. Hessell; Dennis R. Burton; Erica Ollmann Saphire

The trimeric membrane-anchored ebolavirus envelope glycoprotein (GP) is responsible for viral attachment, fusion and entry. Knowledge of its structure is important both for understanding ebolavirus entry and for the development of medical interventions. Crystal structures of viral glycoproteins, especially those in their metastable prefusion oligomeric states, can be difficult to achieve given the challenges in production, purification, crystallization and diffraction that are inherent in the heavily glycosylated flexible nature of these types of proteins. The crystal structure of ebolavirus GP in its trimeric prefusion conformation in complex with a human antibody derived from a survivor of the 1995 Kikwit outbreak has now been determined [Lee et al. (2008), Nature (London), 454, 177-182]. Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing are described. Glycoproteins were produced in human embryonic kidney 293T cells, which allowed rapid screening of constructs and expression of protein in milligram quantities. Complexes of GP with an antibody fragment (Fab) promoted crystallization and a series of deglycosylation strategies, including sugar mutants, enzymatic deglycosylation, insect-cell expression and glycan anabolic pathway inhibitors, were attempted to improve the weakly diffracting glycoprotein crystals. The signal-to-noise ratio of the search model for molecular replacement was improved by determining the structure of the uncomplexed Fab. Phase combination with Fab model phases and a selenium anomalous signal, followed by NCS-averaged density modification, resulted in a clear interpretable electron-density map. Model building was assisted by the use of B-value-sharpened electron-density maps and the proper sequence register was confirmed by building alternate sequences using N-linked glycan sites as anchors and secondary-structural predictions.


Journal of Virology | 2016

Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression.

Shun Ichiro Oda; Takeshi Noda; Kaveesha J. Wijesinghe; Peter Halfmann; Zachary A. Bornholdt; Dafna M. Abelson; Tammy Armbrust; Robert V. Stahelin; Yoshihiro Kawaoka; Erica Ollmann Saphire

ABSTRACT Marburg virus (MARV), a member of the filovirus family, causes severe hemorrhagic fever with up to 90% lethality. MARV matrix protein VP40 is essential for assembly and release of newly copied viruses and also suppresses immune signaling in the infected cell. Here we report the crystal structure of MARV VP40. We found that MARV VP40 forms a dimer in solution, mediated by N-terminal domains, and that formation of this dimer is essential for budding of virus-like particles. We also found the N-terminal domain to be necessary and sufficient for immune antagonism. The C-terminal domains of MARV VP40 are dispensable for immunosuppression but are required for virus assembly. The C-terminal domains are only 16% identical to those of Ebola virus, differ in structure from those of Ebola virus, and form a distinct broad and flat cationic surface that likely interacts with the cell membrane during virus assembly. IMPORTANCE Marburg virus, a cousin of Ebola virus, causes severe hemorrhagic fever, with up to 90% lethality seen in recent outbreaks. Molecular structures and visual images of the proteins of Marburg virus are essential for the development of antiviral drugs. One key protein in the Marburg virus life cycle is VP40, which both assembles the virus and suppresses the immune system. Here we provide the molecular structure of Marburg virus VP40, illustrate differences from VP40 of Ebola virus, and reveal surfaces by which Marburg VP40 assembles progeny and suppresses immune function.


PLOS Pathogens | 2016

The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis.

Robert N. Kirchdoerfer; Crystal L. Moyer; Dafna M. Abelson; Erica Ollmann Saphire

Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

Collaboration


Dive into the Dafna M. Abelson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marnie L. Fusco

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Peter Halfmann

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yoshihiro Kawaoka

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan B. Geisbert

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

John M. Dye

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Kartik Chandran

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Malcolm R. Wood

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge