Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zachary A. Steelman is active.

Publication


Featured researches published by Zachary A. Steelman.


Analytical Chemistry | 2015

Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging

Andrew J. Traverso; Jonathan V. Thompson; Zachary A. Steelman; Zhaokai Meng; Marlan O. Scully; Vladislav V. Yakovlev

We present a unique confocal microscope capable of measuring the Raman and Brillouin spectra simultaneously from a single spatial location. Raman and Brillouin scattering offer complementary information about a materials chemical and mechanical structure, respectively, and concurrent monitoring of both of these spectra would set a new standard for material characterization. We achieve this by applying recent innovations in Brillouin spectroscopy that reduce the necessary acquisition times to durations comparable to conventional Raman spectroscopy while attaining a high level of spectral accuracy. To demonstrate the potential of the system, we map the Raman and Brillouin spectra of a molded poly(ethylene glycol) diacrylate (PEGDA) hydrogel sample in cyclohexane to create two-dimensional images with high contrast at microscale resolutions. This powerful tool has the potential for very diverse analytical applications in basic science, industry, and medicine.


Journal of Biophotonics | 2015

Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis.

Zachary A. Steelman; Zhaokai Meng; Andrew J. Traverso; Vladislav V. Yakovlev

Bacterial meningitis is a disease of pronounced clinical significance, especially in the developing world. Immediate treatment with antibiotics is essential, and no single test can provide a conclusive diagnosis. It is well established that elevated total protein in cerebrospinal fluid (CSF) is associated with bacterial meningitis. Brillouin spectroscopy is a widely used optical technique for noninvasive determination of the elastic moduli of materials. We found that elevated protein levels in CSF alter the fluid elasticity sufficiently to be measurable by Brillouin spectroscopy, with model healthy and diseased fluids distinguishable to marked significance (P = 0.014), which increases with sample concentration by dialysis. Typical raw output of a 2-stage VIPA Brillouin spectrometer: inelastically scattered Brillouin peaks (arrows) and elastically scattered incident radiation (center cross).


Journal of Biophotonics | 2017

Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies

Zachary A. Steelman; Will J. Eldridge; Jacob B. Weintraub; Adam Wax

The refractive index (RI) of biological materials is a fundamental parameter for the optical characterization of living systems. Numerous light scattering technologies are grounded in a quantitative knowledge of the refractive index at cellular and subcellular scales. Recent work in quantitative phase microscopy (QPM) has called into question the widely held assumption that the index of the cell nucleus is greater than that of the cytoplasm, a result which disagrees with much of the current literature. In this work, we critically examine the measurement of the nuclear and whole-cell refractive index using QPM, validating that nuclear refractive index is lower than that of cytoplasm in four diverse cell lines and their corresponding isolated nuclei. We further examine Mie scattering and phase-wrapping as potential sources of error in these measurements, finding they have minimal impact. Finally, we use simulation to examine the effects of incorrect RI assumptions on nuclear morphology measurements using angle-resolved scattering information. Despite an erroneous assumption of the nuclear refractive index, accurate measurement of nuclear morphology was maintained, suggesting that light scattering modalities remain effective.


Biophysical Journal | 2017

Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness

Will J. Eldridge; Zachary A. Steelman; Brianna Loomis; Adam Wax

There have been sustained efforts on the part of cell biologists to understand the mechanisms by which cells respond to mechanical stimuli. To this end, many rheological tools have been developed to characterize cellular stiffness. However, measurement of cellular viscoelastic properties has been limited in scope by the nature of most microrheological methods, which require direct mechanical contact, applied at the single-cell level. In this article, we describe, to our knowledge, a new analysis approach for quantitative phase imaging that relates refractive index variance to disorder strength, a parameter that is linked to cell stiffness. Significantly, both disorder strength and cell stiffness are measured with the same phase imaging system, presenting a unique alternative for label-free, noncontact, single-shot imaging of cellular rheologic properties. To demonstrate the potential applicability of the technique, we measure phase disorder strength and shear stiffness across five cellular populations with varying mechanical properties and demonstrate an inverse relationship between these two parameters. The existence of this relationship suggests that predictions of cell mechanical properties can be obtained from examining the disorder strength of cell structure using this, to our knowledge, novel, noncontact technique.


Proceedings of SPIE | 2015

The role of PIP2 and the IP3/DAG pathway in intracellular calcium release and cell survival during nanosecond electric pulse exposures

Zachary A. Steelman; Gleb P. Tolstykh; Larry E. Estlack; Caleb C. Roth; Bennett L. Ibey

Phosphatidylinositol4,5-biphosphate (PIP2) is a membrane phospholipid of particular importance in cell-signaling pathways. Hydrolysis of PIP2 releases inositol-1,4,5-triphosphate (IP3) from the membrane, activating IP3 receptors on the smooth endoplasmic reticulum (ER) and facilitating a release of intracellular calcium stores and activation of protein kinase C (PKC). Recent studies suggest that nanosecond pulsed electric fields (nsPEF) cause depletion of PIP2 in the cellular membrane, activating the IP3 signaling pathway. However, the exact mechanism(s) causing this observed depletion of PIP2 are unknown. Complicating the matter, nsPEF create nanopores in the plasma membrane, allowing calcium to enter the cell and thus causing an increase in intracellular calcium. While elevated intracellular calcium can cause activation of phospholipase C (PLC) (a known catalyst of PIP2 hydrolysis), PIP2 depletion has been shown to occur in the absence of both extracellular and intracellular calcium. These observations have led to the hypothesis that the high electric field itself may be playing a direct role in the hydrolysis of PIP2 from the plasma membrane. To support this hypothesis, we used edelfosine to block PLC and prevent activation of the IP3/DAG pathway in Chinese Hamster Ovarian (CHO) cells prior to applying nsPEF. Fluorescence microscopy was used to monitor intracellular calcium bursts during nsPEF, while MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) survivability assays were utilized to determine whether edelfosine improved cell survival during nsPEF exposure. This work is critical to refine the role of PIP2 in the cellular response to nsPEF, and also to determine the fundamental biological effects of high electric field exposures.


Biochemistry and biophysics reports | 2017

nsPEF-induced PIP2 Depletion, PLC Activity and Actin Cytoskeletal Cortex Remodeling Are Responsible for Post-exposure Cellular Swelling and Blebbing

Gleb P. Tolstykh; Gary L. Thompson; Hope T. Beier; Zachary A. Steelman; Bennett L. Ibey

Cell swelling and blebbing has been commonly observed following nanosecond pulsed electric field (nsPEF) exposure. The hypothesized origin of these effects is nanoporation of the plasma membrane (PM) followed by transmembrane diffusion of extracellular fluid and disassembly of cortical actin structures. This investigation will provide evidence that shows passive movement of fluid into the cell through nanopores and increase of intracellular osmotic pressure are not solely responsible for this observed phenomena. We demonstrate that phosphatidylinositol-4,5-bisphosphate (PIP2) depletion and hydrolysis are critical steps in the chain reaction leading to cellular blebbing and swelling. PIP2 is heavily involved in osmoregulation by modulation of ion channels and also serves as an intracellular membrane anchor to cortical actin and phospholipase C (PLC). Given the rather critical role that PIP2 depletion appears to play in the response of cells to nsPEF exposure, it remains unclear how its downstream effects and, specifically, ion channel regulation may contribute to cellular swelling, blebbing, and unknown mechanisms of the lasting “permeabilization” of the PM.


Applied Optics | 2018

Comparison of imaging fiber bundles for coherence-domain imaging

Zachary A. Steelman; Sanghoon Kim; Evan T. Jelly; Michael Crose; Kengyeh K. Chu; Adam Wax

Use of imaging fiber bundles for coherence-domain imaging has remained limited to date. In this work, we provide characterization of commercially available imaging bundles for coherence-domain imaging, by evaluating their modal structure for applicability to interferometric imaging. We further examine custom fabricated bundles developed in collaboration with a corporate partner for their ability to reduce interelement optical path length variability and cross talk between elements. The results presented here will serve as a useful guide for comparing fiber bundles for coherence imaging while also offering an improved understanding of the functionality and limitations of imaging bundles for advancing coherent imaging technologies.


Proceedings of SPIE | 2016

High frequency application of nanosecond pulsed electric fields alters cellular membrane disruption and fluorescent dye uptake

Zachary A. Steelman; Gleb P. Tolstykh; Hope T. Beier; Bennett L. Ibey

Cells exposed to nanosecond-pulsed electric fields (nsPEF) exhibit a wide variety of nonspecific effects, including blebbing, swelling, intracellular calcium bursts, apoptotic and necrotic cell death, formation of nanopores, and depletion of phosphatidylinositol 4,5-biphosphate (PIP2) to induce activation of the inositol trisphosphate/diacylglycerol pathway. While several studies have taken place in which multiple pulses were delivered to cells, the effect of pulse repetition rate (PRR) is not well understood. To better understand the effects of PRR, a laser scanning confocal microscope was used to observe CHO-K1 cells exposed to ten 600ns, 200V pulses at varying repetition rates (5Hz up to 500KHz) in the presence of either FM 1-43, YO-PRO-1, or Propidium Iodide (PI) fluorescent dyes, probes frequently used to indicate nanoporation or permeabilization of the plasma membrane. Dye uptake was monitored for 30 seconds after pulse application at a rate of 1 image/second. In addition, a single long pulse of equivalent energy (200V, 6 μs duration) was applied to test the hypothesis that very fast PRR will approximate the biological effects of a single long pulse of equal energy. Upon examination of the data, we found strong variation in the relationship between PRR and uptake in each of the three dyes. In particular, PI uptake showed little frequency dependence, FM 1-43 showed a strong inverse relationship between frequency and internal cell fluorescence, and YO-PRO-1 exhibited a “threshold” point of around 50 KHz, after which the inverse trend observed in FM 1-43 was seen to reverse itself. Further, a very high PRR of 500 KHz only approximated the biological effects of a single 6 μs pulse in cells stained with YO-PRO-1, suggesting that uptake of different dyes may proceed by different physical mechanisms.


Journal of Biophotonics | 2018

Angular range, sampling and noise considerations for inverse light scattering analysis of nuclear morphology

Haoran Zhang; Zachary A. Steelman; Derek Ho; Kengyeh K. Chu; Adam Wax

In recent years, significant work has been devoted to the use of angle-resolved elastic scattering for the extraction of nuclear morphology in tissue. By treating the nucleus as a Mie scattering object, techniques such as angle-resolved low-coherence interferometry (a/LCI) have demonstrated substantial success in identifying nuclear alterations associated with dysplasia. Because optical biopsies are inherently noninvasive, only a small, discretized portion of the 4π scattering field can be collected from tissue, limiting the amount of information available for diagnostic purposes. In this work, we comprehensively characterize the diagnostic impact of variations in angular sampling, range and noise for inverse light scattering analysis of nuclear morphology, using a previously reported dataset from 40 patients undergoing a/LCI optical biopsy for cervical dysplasia. The results from this analysis are applied to a benchtop scanning a/LCI system which compromises angular range for wide-area scanning capability. This work will inform the design of next-generation optical biopsy probes by directing optical design towards parameters which offer the most diagnostic utility.


Applied Physics Letters | 2017

Revealing the glass transition in shape memory polymers using Brillouin spectroscopy

Zachary A. Steelman; Andrew C. Weems; Andrew J. Traverso; Jason M. Szafron; Duncan J. Maitland; Vladislav V. Yakovlev

Emerging medical devices which employ shape memory polymers (SMPs) require precise measurements of the glass transition temperature (Tg) to ensure highly controlled shape recovery kinetics. Conventional techniques like differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) have limitations that prevent utilization for certain devices, including limited accuracy and the need for sacrificial samples. In this report, we employ an approach based on Brillouin spectroscopy to probe the glass transition of SMPs rapidly, remotely, and nondestructively. Further, we compare the Tg obtained from Brillouin scattering with DMA- and DSC-measured Tg to demonstrate the accuracy of Brillouin scattering for this application. We conclude that Brillouin spectroscopy is an accurate technique for obtaining the glass transition temperature of SMPs, aligning closely with the most common laboratory standards while providing a rapid, remote, and nondestructive method for the analysis of unique polymeric medical devices.

Collaboration


Dive into the Zachary A. Steelman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bennett L. Ibey

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hope T. Beier

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge