Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zachary C. Ryan is active.

Publication


Featured researches published by Zachary C. Ryan.


Journal of Biological Chemistry | 2006

The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

James R. Thompson; Zachary C. Ryan; Jeffrey L. Salisbury; Rajiv Kumar

Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered α-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an α-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium

Zachary C. Ryan; Hemamalini Ketha; Melissa S. McNulty; Meghan E. McGee-Lawrence; Theodore A. Craig; Joseph P. Grande; Jennifer J. Westendorf; Ravinder Singh; Rajiv Kumar

Inactivating mutations of the SOST (sclerostin) gene are associated with overgrowth and sclerosis of the skeleton. To determine mechanisms by which increased amounts of calcium and phosphorus are accreted to enable enhanced bone mineralization in the absence of sclerostin, we measured concentrations of calciotropic and phosphaturic hormones, and urine and serum calcium and inorganic phosphorus in mice in which the sclerostin (sost) gene was replaced by the β-D-galactosidase (lacZ) gene in the germ line. Knockout (KO) (sost−/−) mice had increased bone mineral density and content, increased cortical and trabecular bone thickness, and greater net bone formation as a result of increased osteoblast and decreased osteoclast surfaces compared with wild-type (WT) mice. β-Galactosidase activity was detected in osteocytes of sost KO mice but was undetectable in WT mice. Eight-week-old, male sost KO mice had increased serum 1α,25-dihydroxyvitamin D, decreased 24,25-dihydroxyvitamin D, decreased intact fibroblast growth factor 23, and elevated inorganic phosphorus concentrations compared with age-matched WT mice. 25-Hydroxyvitamin D 1α-hydroxylase cytochrome P450 (cyp27B1) mRNA was increased in kidneys of sost KO mice compared with WT mice. Treatment of cultured proximal tubule cells with mouse recombinant sclerostin decreased cyp27B1 mRNA transcripts. Urinary calcium and renal fractional excretion of calcium were decreased in sost KO mice compared with WT mice. Sost KO and WT mice had similar serum calcium and parathyroid hormone concentrations. The data show that sclerostin not only alters bone mineralization, but also influences mineral metabolism by altering concentrations of hormones that regulate mineral accretion.


Bone | 2013

Histone deacetylase 3 is required for maintenance of bone mass during aging

Meghan E. McGee-Lawrence; Elizabeth W. Bradley; Amel Dudakovic; Samuel W. Carlson; Zachary C. Ryan; Rajiv Kumar; Mahrokh Dadsetan; Michael J. Yaszemski; Qingshan Chen; Kai-Nan An; Jennifer J. Westendorf

Histone deacetylase 3 (Hdac3) is a nuclear enzyme that removes acetyl groups from lysine residues in histones and other proteins to epigenetically regulate gene expression. Hdac3 interacts with bone-related transcription factors and co-factors such as Runx2 and Zfp521, and thus is poised to play a key role in the skeletal system. To understand the role of Hdac3 in osteoblasts and osteocytes, Hdac3 conditional knockout (CKO) mice were created with the osteocalcin (OCN) promoter driving Cre expression. Hdac3 CKO(OCN) mice were of normal size and weight, but progressively lost trabecular and cortical bone mass with age. The Hdac3 CKO(OCN) mice exhibited reduced cortical bone mineralization and material properties and suffered frequent fractures. Bone resorption was lower, not higher, in the Hdac3 CKO(OCN) mice, suggesting that primary defects in osteoblasts caused the reduced bone mass. Indeed, reductions in bone formation were observed. Osteoblasts and osteocytes from Hdac3 CKO(OCN) mice showed increased DNA damage and reduced functional activity in vivo and in vitro. Thus, Hdac3 expression in osteoblasts and osteocytes is essential for bone maintenance during aging.


Journal of Biological Chemistry | 2016

1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells

Zachary C. Ryan; Theodore A. Craig; Clifford D.L. Folmes; Xuewei Wang; Ian R. Lanza; Niccole Schaible; Jeffrey L. Salisbury; K. Sreekumaran Nair; Andre Terzic; Gary C. Sieck; Rajiv Kumar

Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength.


Biochemical and Biophysical Research Communications | 2013

Sclerostin deficient mice rapidly heal bone defects by activating β-catenin and increasing intramembranous ossification

Meghan E. McGee-Lawrence; Zachary C. Ryan; Lomeli R. Carpio; Sanjeev Kakar; Jennifer J. Westendorf; Rajiv Kumar

We investigated the influence of the osteocyte protein, sclerostin, on fracture healing by examining the dynamics and mechanisms of repair of single-cortex, stabilized femoral defects in sclerostin knockout (Sost(-/-); KO) and sclerostin wild-type (Sost(+/+); WT) mice. Fourteen days following generation of bone defects, Sost KO mice had significantly more bone in the healing defect than WT mice. The increase in regenerating bone was due to an increase in the thickness of trabecularized spicules, osteoblast numbers and surfaces within the defect. Enhanced healing of bone defects in Sost KO mice was associated with significantly more activated β-catenin expression than observed in WT mice. The findings were similar to those observed in Axin2(-/-) mice, in which β-catenin signaling is known to be enhanced to facilitate bone regeneration. Taken together, these data indicate that enhanced β-catenin signaling is present in Sost(-/-) mice that demonstrate accelerated healing of bone defects, suggesting that modulation of β-catenin signaling in bone could be used to promote fracture repair.


Biochemical and Biophysical Research Communications | 2014

Enhanced prostacyclin formation and Wnt signaling in sclerostin deficient osteocytes and bone

Zachary C. Ryan; Theodore A. Craig; Jeffrey L. Salisbury; Lomeli R. Carpio; Meghan E. McGee-Lawrence; Jennifer J. Westendorf; Rajiv Kumar

We show that prostacyclin production is increased in bone and osteocytes from sclerostin (Sost) knockout mice which have greatly increased bone mass. The addition of prostacyclin or a prostacyclin analog to bone forming osteoblasts enhances differentiation and matrix mineralization of osteoblasts. The increase in prostacyclin synthesis is linked to increases in β-catenin concentrations and activity as shown by enhanced binding of lymphoid enhancer factor, Lef1, to promoter elements within the prostacyclin synthase promoter. Blockade of Wnt signaling reduces prostacyclin production in osteocytes. Increased prostacyclin production by osteocytes from sclerostin deficient mice could potentially contribute to the increased bone formation seen in this condition.


Biochemical and Biophysical Research Communications | 2018

1α,25-dihydroxyvitamin D3 mitigates cancer cell mediated mitochondrial dysfunction in human skeletal muscle cells

Zachary C. Ryan; Theodore A. Craig; Xuewei Wang; Philippe Delmotte; Jeffrey L. Salisbury; Ian R. Lanza; Gary C. Sieck; Rajiv Kumar

Cancer cachexia is associated with muscle weakness and atrophy. We investigated whether 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), which has previously been shown to increase skeletal myoblast oxygen consumption rate, could reverse the deleterious effects of tumor cell conditioned medium on myoblast function. Conditioned medium from Lewis lung carcinoma (LLC1) cells inhibits oxygen consumption, increases mitochondrial fragmentation, inhibits pyruvate dehydrogenase activity, and enhances proteasomal activity in human skeletal muscle myoblasts. 1α,25(OH)2D3 reverses the tumor cell-mediated changes in mitochondrial oxygen consumption and proteasomal activity, without changing pyruvate dehydrogenase activity. 1α,25(OH)2D3 might be useful in treatment of weakness seen in association with CC.


Journal of the American Society for Mass Spectrometry | 2006

Metal-Binding Properties of Human Centrin-2 Determined by Micro-Electrospray Ionization Mass Spectrometry and UV Spectroscopy

Theodore A. Craig; Linda M. Benson; H. Robert Bergen; Sergei Yu. Venyaminov; Jeffrey L. Salisbury; Zachary C. Ryan; James R. Thompson; Justin Sperry; Michael L. Gross; Rajiv Kumar


Biochemical and Biophysical Research Communications | 2015

Deletion of the intestinal plasma membrane calcium pump, isoform 1, Atp2b1, in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25-dihydroxyvitamin D3

Zachary C. Ryan; Theodore A. Craig; Adelaida G. Filoteo; Jennifer J. Westendorf; Elizabeth J. Cartwright; Ludwig Neyses; Emanuel E. Strehler; Rajiv Kumar


Biochemical and Biophysical Research Communications | 2006

Biophysical properties of the extra-cellular domain of the calcium-sensing receptor

Zachary C. Ryan; Theodore A. Craig; Sergei Yu. Venyaminov; James R. Thompson; Rajiv Kumar

Collaboration


Dive into the Zachary C. Ryan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge