Zainulabedin M. Saiyed
Florida International University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zainulabedin M. Saiyed.
International Journal of Nanomedicine | 2010
Zainulabedin M. Saiyed; Nimisha Gandhi; Madhavan Nair
Despite significant advances in highly active antiretroviral therapy (HAART), the prevalence of neuroAIDS remains high. This is mainly attributed to inability of antiretroviral therapy (ART) to cross the blood–brain barrier (BBB), thus resulting in insufficient drug concentration within the brain. Therefore, development of an active drug targeting system is an attractive strategy to increase the efficacy and delivery of ART to the brain. We report herein development of magnetic azidothymidine 5′-triphosphate (AZTTP) liposomal nanoformulation and its ability to transmigrate across an in vitro BBB model by application of an external magnetic field. We hypothesize that this magnetically guided nanoformulation can transverse the BBB by direct transport or via monocyte-mediated transport. Magnetic AZTTP liposomes were prepared using a mixture of phosphatidyl choline and cholesterol. The average size of prepared liposomes was about 150 nm with maximum drug and magnetite loading efficiency of 54.5% and 45.3%, respectively. Further, magnetic AZTTP liposomes were checked for transmigration across an in vitro BBB model using direct or monocyte-mediated transport by application of an external magnetic field. The results show that apparent permeability of magnetic AZTTP liposomes was 3-fold higher than free AZTTP. Also, the magnetic AZTTP liposomes were efficiently taken up by monocytes and these magnetic monocytes showed enhanced transendothelial migration compared to normal/non-magnetic monocytes in presence of an external magnetic field. Thus, we anticipate that the developed magnetic nanoformulation can be used for targeting active nucleotide analog reverse transcriptase inhibitors to the brain by application of an external magnetic force and thereby eliminate the brain HIV reservoir and help to treat neuroAIDS.
Journal of NeuroVirology | 2010
Nimisha Gandhi; Zainulabedin M. Saiyed; Jessica Napuri; Thangavel Samikkannu; Pichili Vijaya Bhaskar Reddy; Marisela Agudelo; Pradnya Khatavkar; Shailendra K. Saxena; Madhavan Nair
In recent years, increasing interest has emerged to assess the human immunodeficiency virus type 1 (HIV-1) clade C viral pathogenesis due to its anticipated spread in the United States and other western countries. Previous studies suggest that clade C is less neuropathogenic than clade B; however, the underlying mechanism is poorly understood. Additionally, the interactive role of drugs of abuse such as cocaine on clade C-associated neuropathogenesis has not been reported. In the current study, we hypothesize that HIV-1 clade-specific Tat proteins exert differential effects on blood-brain barrier (BBB) integrity and cocaine further differentially aggravates the BBB dysfunction. We evaluated the effect of Tat B and Tat C and/or cocaine on the BBB integrity using an in vitro model constructed with primary human brain microvascular endothelial cells (HBMECs) and astrocytes. The BBB membrane integrity was measured by transendothelial electrical resistance (TEER) and paracellular permeability was measured by fluorescein isothiocyanate (FITC)-dextran transport assay and monocytes transmigration across the BBB. Results indicate that Tat B disrupts BBB integrity to a greater extent compared to Tat C and cocaine further differentially exacerbates the BBB dysfunction. This BBB dysfunction was associated with altered expression of tight junction proteins zona occuldens (ZO-1) and junctional adhesion molecule (JAM)-2. Thus, these results for the first time delineate the differential role of Tat B and Tat C and/or cocaine in BBB dysfunction, which may be correlated with the clade-specific differences observed in HIV-1-associated neurological disorders.
AIDS Research and Human Retroviruses | 2009
Nimisha Gandhi; Zainulabedin M. Saiyed; Samikkannu Thangavel; José W. Rodríguez; Kurapati V. K. Rao; Madhavan Nair
The existence of multiple subtypes of HIV-1 worldwide has created new challenges to control HIV-1 infection and associated neuropathogenesis. Previous studies indicate a difference in neuropathogenic manifestations of HIV-1-associated neuroAIDS between clade B- and clade C-infected subjects with clade B being more neuropathogenic than clade C. However, the exact mechanism underlying the differences in the neuropathogenesis by both the subtypes remains elusive. Development of neuroAIDS is associated with a complex interplay between proinflammatory and antiinflammatory cytokines and chemokines. In the current study, we hypothesize that HIV-1 clade B and C Tat protein exert differential effects on human primary monocytes leading to differences in gene and protein expression of cytokines implicated in neuroAIDS. Primary human monocytes were treated with clade B and clade C Tat protein and quantitative real time PCR was performed to determine gene expression of proinflammatory cytokines (IL-6 and TNF-alpha) and antiinflammatory cytokines (IL-4 and IL-10). Further, cytokine secretion was measured in culture supernatants by ELISA, whereas intracellular cytokine expression was detected by flow cytometry. Results indicate that monocytes treated with Tat B showed significant upregulation of proinflammatory cytokines, IL-6 and TNF-alpha, as compared to Tat C-treated cultures. However, expression of antiinflammatory molecules and IL-4 and IL-10 was found to be higher in Tat C-treated compared to Tat B-treated cultures. Thus, our result shows for the first time that Tat B and Tat C differentially modulate expression of neuropathogenic molecules that may be correlated with the differences in neuroAIDS manifestation induced by clade-specific infections.
Alcoholism: Clinical and Experimental Research | 2011
Marisela Agudelo; Nimisha Gandhi; Zainulabedin M. Saiyed; Vijaya Pichili; Samikkannu Thangavel; Pradnya Khatavkar; Adriana Yndart-Arias; Madhavan Nair
BACKGROUND Previous studies have implicated histone deacetylases (HDACs) and HDAC inhibitors (HDIs) such as trichostatin A (TSA) in the regulation of gene expression during drug addiction. Furthermore, an increase in HDAC activity has been linked to neurodegeneration. Alcohol has also been shown to promote abundant generation of reactive oxygen species (ROS) resulting in oxidative stress. TSA inhibits HDACs and has been shown to be neuroprotective in other neurodegenerative disease models. Although HDACs and HDIs have been associated with drug addiction, there is no evidence of the neurodegenerative role of HDAC2 and neuroprotective role of TSA in alcohol addiction. Therefore, we hypothesize that alcohol modulates HDAC2 through mechanisms involving oxidative stress. METHODS To test our hypothesis, the human neuronal cell line, SK-N-MC, was treated with different concentrations of ethanol (EtOH); HDAC2 gene and protein expression were assessed at different time points. Pharmacological inhibition of HDAC2 with TSA was evaluated at the gene level using qRT-PCR and at the protein level using Western blot and flow cytometry. ROS production was measured with a fluorescence microplate reader and fluorescence microscopy. RESULTS Our results showed a dose-dependent increase in HDAC2 expression with EtOH treatment. Additionally, alcohol significantly induced ROS, and pharmacological inhibition of HDAC2 with TSA was shown to be neuroprotective by significantly inhibiting HDAC2 and ROS. CONCLUSIONS These results suggest that EtOH can upregulate HDAC2 through mechanisms involving oxidative stress and HDACs may play an important role in alcohol use disorders (AUDs). Moreover, the use of HDIs may be of therapeutic significance for the treatment of neurodegenerative disorders including AUDs.
Neurochemistry International | 2012
Pichili Vijaya Bhaskar Reddy; Nimisha Gandhi; Thangavel Samikkannu; Zainulabedin M. Saiyed; Marisela Agudelo; Adriana Yndart; Pradnya Khatavkar; Madhavan Nair
HIV infection affects the central nervous system resulting in HIV associated neurocognitive disorder (HAND), which is characterized by depression, behavioral and motor dysfunctions. The HIV-1 viral envelope protein gp120 is known to induce the release of neurotoxic factors which lead to apoptotic cell death. Although the exact mechanisms involved in HIV-1 gp120-induced neurotoxicity are not completely understood, oxidative stress is suggested to play a vital role in the neuropathogenesis of HAND. Astrocytes represent major population of the non-neuronal cell type in the brain and play a critical role in the neuropathogenesis of HAND. Increased oxidative stress is known to induce nuclear factor erythroid derived 2-related factor 2 (Nrf2), a basic leucine zipper transcription factor which is known to regulate the antioxidant defensive mechanism. However, the role of Nrf2 in HAND has not been elucidated. We report that gp120 significantly upregulates Nrf2 in human astrocytes and is associated with stimulation of key antioxidant defensive enzymes Hemoxygenase (HO-1) and NAD(P)H dehydrogenase quinone1 (Nqo1). Pretreatment of the astrocytes with antioxidants or a specific calcium chelator BAPTA-AM, significantly blocked the upregulation of Nrf2, HO-1 and Nqo1. These results suggest a possible role of the intracellular calcium and oxidative stress in Nrf2 mediated antioxidant defense mechanism, which may have protective role in promoting cell survival.
Neurochemistry International | 2011
Zainulabedin M. Saiyed; Nimisha Gandhi; Marisela Agudelo; Jessica Napuri; Thangavel Samikkannu; Pichili Vijaya Bhaskar Reddy; Pradnya Khatavkar; Adriana Yndart; Shailendra K. Saxena; Madhavan Nair
Histone deacetylases (HDACs) play a pivotal role in epigenetic regulation of transcription and homeostasis of protein acetylation in histones and other proteins involved in chromatin remodeling. Histone hypoacetylation and transcriptional dysfunction have been shown to be associated with a variety of neurodegenerative diseases. More recently, neuron specific overexpression of HDAC2 has been shown to modulate synaptic plasticity and learning behavior in mice. However, the role of HDAC2 in development of HIV-associated neurocognitive disorders (HAND) is not reported. Herein we report that HIV-1 Tat protein upregulate HDAC2 expression in neuronal cells leading to transcriptional repression of genes involved in synaptic plasticity and neuronal function thereby contributing to the progression of HAND. Our results indicate upregulation of HDAC2 by Tat treatment in dose and time dependant manner by human neuroblastoma SK-N-MC cells and primary human neurons. Further, HDAC2 overexpression was associated with concomitant downregulation in CREB and CaMKIIa genes that are known to regulate neuronal activity. These observed effects were completely blocked by HDAC2 inhibition. These results for the first time suggest the possible role of HDAC2 in development of HAND. Therefore, use of HDAC2 specific inhibitor in combination with HAART may be of therapeutic value in treatment of neurocognitive disorders observed in HIV-1 infected individuals.
AIDS Research and Human Retroviruses | 2009
Thangavel Samikkannu; Zainulabedin M. Saiyed; Kurapati V. K. Rao; Dakshayani Kadiyala Babu; José W. Rodríguez; Marina N. Papuashvili; Madhavan Nair
Previous studies have demonstrated that infection with HIV-1 clades might differentially contribute to the neuropathogenesis of HIV-1-associated dementia (HAD). HIV-1 transactivator regulatory protein (Tat) plays a major role in the process of disruption of neuronal function. It is not well understood how these HIV-1 subtypes exert different neuropathogenic effects. Activation of indoleamine-2,3-dioxygenase (IDO), the rate-limiting enzyme of the kynurenine pathway, leads to increased tryptophan catabolism and the generation of neurotoxins such as kynurenine (KYN). It is known that KYN plays a crucial role in the neuropathogenesis of HAD. We hypothesize that HIV-1 clade B and C Tat proteins might exert differential effects on human primary astrocytes by the upregulation of the IDO gene and protein expression as well as its activity and production of the neurotoxin KYN. RNA extracted from human primary astrocytes treated with either HIV-1 clade B and C Tat proteins was reverse transcribed and analyzed by quantitative real-time PCR to determine IDO gene expression. In addition, the enzymatic activity of IDO and the concentration of KYN were measured in cell lysates and culture supernatants. Our results indicate that HIV-1 clade B Tat protein significantly upregulated the IDO gene and protein expression, IDO enzyme activity, as well as KYN concentration compared to HIV-1 clade C Tat protein. Thus, our studies for the first time demonstrate that HIV-1 clade B Tat protein in human primary astrocytes appears to increase the level of neuropathogenic agents, such as IDO and KYN, as compared to HIV-1 clade C Tat protein. These results provide further evidence that the prevalence of HAD may be correlated with the difference in clades of HIV-1.
Journal of NeuroVirology | 2009
Zainulabedin M. Saiyed; Nimisha Gandhi; Madhavan Nair
Inefficient cellular phosphorylation of nucleoside and nucleotide analog reverse transcriptase inhibitors (NRTIs) to their active nucleoside 5′-triphosphate (NTPs) form is one of the limitations for human immunodeficiency virus (HIV) therapy. We report herein direct binding of 3′-azido-3′-deoxythymidine-5′-triphosphate (AZTTP) onto magnetic nanoparticles (Fe3O4; magnetite) due to ionic interaction. This magnetic nanoparticle bound AZTTP (MP-AZTTP) completely retained its biological activity as assessed by suppression of HIV-1 replication in peripheral blood mononuclear cells. The developed MP-AZTTP nanoformulation can be used for targeting active NRTIs to the brain by application of an external magnetic force and thereby eliminate the brain HIV reservoir and help to treat NeuroAIDS.
Aids Research and Treatment | 2012
Pichili Vijaya Bhaskar Reddy; Sudheesh Pilakka-Kanthikeel; Shailendra K. Saxena; Zainulabedin M. Saiyed; Madhavan Nair
HIV epidemic continues to be a severe public health problem and concern within USA and across the globe with about 33 million people infected with HIV. The frequency of drug abuse among HIV infected patients is rapidly increasing and is another major issue since injection drug users are at a greater risk of developing HIV associated neurocognitive dysfunctions compared to non-drug users infected with HIV. Brain is a major target for many of the recreational drugs and HIV. Evidences suggest that opiate drug abuse is a risk factor in HIV infection, neural dysfunction and progression to AIDS. The information available on the role of morphine as a cofactor in the neuropathogenesis of HIV is scanty. This review summarizes the results that help in understanding the role of morphine use in HIV infection and neural dysfunction. Studies show that morphine enhances HIV-1 infection by suppressing IL-8, downregulating chemokines with reciprocal upregulation of HIV coreceptors. Morphine also activates MAPK signaling and downregulates cAMP response element-binding protein (CREB). Better understanding on the role of morphine in HIV infection and mechanisms through which morphine mediates its effects may help in devising novel therapeutic strategies against HIV-1 infection in opiate using HIV-infected population.
Life Sciences | 2011
Madhavan Nair; Zainulabedin M. Saiyed
UNLABELLED The United States is currently experiencing an entangled epidemic of HIV infection and use of different drugs of abuse, especially of methamphetamine (Meth). Blood monocyte-derived dendritic cells (DC) are the first line of defense against HIV-1 infection, and are the initial target of HIV-1 infection in injection drug users. DC-SIGN present on dendritic cells is the first molecule that facilitates HIV-1 infection independent of CD4 or HIV coreceptors. AIMS The aim of this study was to evaluate whether Meth acts as a cofactor in the pathogenesis of HIV-1 infection. MAIN METHODS Monocyte derived DCs, obtained from normal subjects were cultured with and without Meth±HIV-1B, followed by analyzing the gene and protein expression by real-time quantitative polymerase chain reaction (RT-PCR) and fluorescence-activated cell-sorting analyses, respectively. KEY FINDINGS Our results show that Meth significantly enhances HIV infection, and downregulates the gene expression of chemokines and costimulatory molecules with reciprocal upregulation of HIV coreceptors and DC-SIGN by dendritic cells. SIGNIFICANCE Better understanding of the role of Meth in HIV-1 disease susceptibility and the mechanism through which Meth mediates its effects on HIV-1 infection may help to devise novel therapeutic strategies against HIV-1 infection in Meth using HIV-1 infected population.