Zaiton Abdul Majid
Universiti Teknologi Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zaiton Abdul Majid.
Journal of Hazardous Materials | 2010
Alias Mohd Yusof; Lee Kian Keat; Zaharah Ibrahim; Zaiton Abdul Majid; Nik Ahmad Nizam
The removal of ammonium from aqueous solutions using zeolite NaY prepared from a local agricultural waste, rice husk ash waste was investigated and a naturally occurring zeolite mordenite in powdered and granulated forms was used as comparison. Zeolite NaY and mordenite were well characterized by powder X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis and the total cation exchange capacity (CEC). CEC of the zeolites were measured as 3.15, 1.46 and 1.34 meq g(-1) for zeolite Y, powdered mordenite and granular mordenite, respectively. Adsorption kinetics and equilibrium data for the removal of NH(4)(+) ions were examined by fitting the experimental data to various models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The equilibrium pattern fits well with the Langmuir isotherm compared to the other isotherms. The monolayer adsorption capacity for zeolite Y (42.37 mg/g) was found to be higher than that powdered mordenite (15.13 mg/g) and granular mordenite (14.56 mg/g). Thus, it can be concluded that the low cost and economical rice husk ash-synthesized zeolite NaY could be a better sorbent for ammonium removal due to its rapid adsorption rate and higher adsorption capacity compared to natural mordenite.
Environmental Science and Pollution Research | 2015
Chinedum Anyika; Zaiton Abdul Majid; Zahara Ibrahim; Mohamad Pauzi Zakaria; Adibah Yahya
Amending polycyclic aromatic hydrocarbon (PAH)-contaminated soils with biochar may be cheaper and environmentally friendly than other forms of organic materials. This has led to numerous studies on the use of biochar to either bind or stimulate the microbial degradation of organic compounds in soils. However, very little or no attention have been paid to the fact that biochars can give simultaneous impact on PAH fate processes, such as volatilization, sorption and biodegradation. In this review, we raised and considered the following questions: How does biochar affect microbes and microbial activities in the soil? What are the effects of adding biochar on sorption of PAHs? What are the effects of adding biochar on degradation of PAHs? What are the factors that we can manipulate in the laboratory to enhance the capability of biochars to degrade PAHs? A triphasic concept of how biochar can give simultaneous impact on PAH fate processes in soils was proposed, which involves rapid PAH sorption into biochar, subsequent desorption and modification of soil physicochemical properties by biochar, which in turn stimulates microbial degradation of the desorbed PAHs. It is anticipated that biochar can give simultaneous impact on PAH fate processes in soils.
Carbohydrate Polymers | 2015
Wan Hazman Danial; Zaiton Abdul Majid; Mohd Nazlan Mohd Muhid; Sugeng Triwahyono; Mohd Bakri Bakar; Zainab Ramli
The study reports on the preparation of cellulose nanocrystals (CNCs) from wastepaper, as an environmental friendly approach of source material, which can be a high availability and low-cost precursor for cellulose nanomaterial processing. Alkali and bleaching treatments were employed for the extraction of cellulose particles followed by controlled-conditions of acid hydrolysis for the isolation of CNCs. Attenuated total reflectance Fourier Transform Infrared (ATR FTIR) spectroscopy was used to analyze the cellulose particles extracted while Transmission electron microscopy images confirmed the presence of CNCs. The diameters of CNCs are in the range of 3-10nm with a length of 100-300nm while a crystallinity index of 75.9% was determined from X-ray diffraction analysis. The synthesis of this high aspect ratio of CNCs paves the way toward alternative reuse of wastepaper in the production of CNCs.
Environmental Science and Pollution Research | 2013
Hui Han Bay; Chin Hong Neoh; Azmi Aris; Zaiton Abdul Majid; Zaharah Ibrahim
In this study, the adsorption behavior of azo dye Acid Orange 7 (AO7) from aqueous solution onto macrocomposite (MC) was investigated under various experimental conditions. The adsorbent, MC, which consists of a mixture of zeolite and activated carbon, was found to be effective in removing AO7. The MC were characterized by scanning electron microscopy (SEM), energy dispersive X-ray, point of zero charge, and Brunauer–Emmett–Teller surface area analysis. A series of experiments were performed via batch adsorption technique to examine the effect of the process variables, namely, contact time, initial dye concentration, and solution pH. The dye equilibrium adsorption was investigated, and the equilibrium data were fitted to Langmuir, Freundlich, and Tempkin isotherm models. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model. For the kinetic study, pseudo-first-order, pseudo-second-order, and intraparticle diffusion model were used to fit the experimental data. The adsorption kinetic was found to be well described by the pseudo-second-order model. Thermodynamic analysis indicated that the adsorption process is a spontaneous and endothermic process. The SEM, Fourier transform infrared spectroscopy, ultraviolet–visible spectral and high performance liquid chromatography analysis were carried out before and after the adsorption process. For the phytotoxicity test, treated AO7 was found to be less toxic. Thus, the study indicated that MC has good potential use as an adsorbent for the removal of azo dye from aqueous solution.
Journal of Bioremediation and Biodegradation | 2011
Hui Han Bay; Thuan Chien Kee; Zaiton Abdul Majid; Ibrahim Zaharah
Azo dyes account for one of the major source of dye wastes in textile effluent. In this study, macrocomposites used in the treatment of a reactive dye, Reactive Black 5 or RB5 is a combination of physical and biological method. Macrocompositee were developed by mixing zeolite, activated carbon and cement as a binder to produce porous composites of high compressive strength. It is capable of physical removal of RB5 from solution besides providing surfaces for the attachment and growth of the bacteria, Paenabacillus sp. as biofilm. The efficiency of the system was investigated in the presence and the absence of biofilm (control) in terms of decolourisation and COD removal. Results indicated that the biofilm system showed an overall better treatment efficiency than the control. The biofilm system successfully decolourized the Reactive Black 5 up to 91% (initial value of 100 mg/mL) as compared to the control which only showed decolourisation of about 4%. Besides that, the biofilm system was also effective in reducing COD value from 898 mg/L to 188 mg/L (79%), while only 13% that of the control. High Performance Liquid Chromatography (HPLC) analyses showed the formation of sulphanilic acid (SA) as a possible degradation product of RB5 under anaerobic condition.
Journal of Pharmaceutical and Biomedical Analysis | 2016
A. Vijaya Bhaskar Reddy; Zulkifli Yusop; Jafariah Jaafar; Azmi Aris; Zaiton Abdul Majid; Khalid Umar; Juhaizah Talib
In this study a sensitive and selective gradient reverse phase UPLC-MS/MS method was developed for the simultaneous determination of six process related impurities viz., Imp-I, Imp-II, Imp-III, Imp-IV, Imp-V and Imp-VI in darunavir. The chromatographic separation was performed on Acquity UPLC BEH C18 (50 mm×2.1mm, 1.7μm) column using gradient elution of acetonitrile-methanol (80:20, v/v) and 5.0mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4mL/min. Both negative and positive electrospray ionization (ESI) modes were operated simultaneously using multiple reaction monitoring (MRM) for the quantification of all six impurities in darunavir. The developed method was fully validated following ICH guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, robustness and sample solution stability. The method was able to quantitate Imp-I, Imp-IV, Imp-V at 0.3ppm and Imp-II, Imp-III, and Imp-VI at 0.2ppm with respect to 5.0mg/mL of darunavir. The calibration curves showed good linearity over the concentration range of LOQ to 250% for all six impurities. The correlation coefficient obtained was >0.9989 in all the cases. The accuracy of the method lies between 89.90% and 104.60% for all six impurities. Finally, the method has been successfully applied for three formulation batches of darunavir to determine the above mentioned impurities, however no impurity was found beyond the LOQ. This method is a good quality control tool for the trace level quantification of six process related impurities in darunavir during its synthesis.
Journal of Separation Science | 2016
Ambavaram Vijaya Bhaskar Reddy; Zulkifli Yusop; Jafariah Jaafar; Azmi Aris; Zaiton Abdul Majid; Khalid Umar; Juhaizah Talib
A sensitive and selective gas chromatography with mass spectrometry method was developed for the simultaneous determination of three organophosphorus pesticides, namely, chlorpyrifos, malathion, and diazinon in three different food commodities (milk, apples, and drinking water) employing solid-phase extraction for sample pretreatment. Pesticide extraction from different sample matrices was carried out on Chromabond C18 cartridges using 3.0 mL of methanol and 3.0 mL of a mixture of dichloromethane/acetonitrile (1:1 v/v) as the eluting solvent. Analysis was carried out by gas chromatography coupled with mass spectrometry using selected-ion monitoring mode. Good linear relationships were obtained in the range of 0.1-50 μg/L for chlorpyrifos, and 0.05-50 μg/L for both malathion and diazinon pesticides. Good repeatability and recoveries were obtained in the range of 78.54-86.73% for three pesticides under the optimized experimental conditions. The limit of detection ranged from 0.02 to 0.03 μg/L, and the limit of quantification ranged from 0.05 to 0.1 μg/L for all three pesticides. Finally, the developed method was successfully applied for the determination of three targeted pesticides in milk, apples, and drinking water samples each in triplicate. No pesticide was found in apple and milk samples, but chlorpyrifos was found in one drinking water sample below the quantification level.
Journal of Separation Science | 2015
Ambavaram Vijaya Bhaskar Reddy; Jafariah Jaafar; Azmi Aris; Zaiton Abdul Majid; Khalid Umar; Juhaizah Talib; G. Madhavi
A sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the simultaneous determination of darunavir, ritonavir and tenofovir in human plasma. Sample preparation involved a simple liquid-liquid extraction using 200 μL of human plasma extracted with methyl tert-butyl ether for three analytes and internal standard. The separation was accomplished on an Acquity UPLC BEH C18 (50 mm x 2.1 mm, 1.7 μm) analytical column using gradient elution of acetonitrile/methanol (80:20, v/v) and 5.0 mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4 mL/min. The linearity of the method ranged between 20.0 and 12 000 ng/mL for darunavir, 2.0 and 2280 ng/mL for ritonavir, and 14.0 and 1600 ng/mL for tenofovir using 200 μL of plasma. The method was completely validated for its selectivity, sensitivity, linearity, precision and accuracy, recovery, matrix effect, stability, and dilution integrity. The extraction recoveries were consistent and ranged between 79.91 and 90.04% for all three analytes and internal standard. The method exhibited good intra-day and inter-day precision between 1.78 and 6.27%. Finally the method was successfully applied for human pharmacokinetic study in eight healthy male volunteers after the oral administration of 600 mg darunavir along with 100 mg ritonavir and 100 mg tenofovir as boosters.
RSC Advances | 2016
Nurrulhidayah Salamun; Sugeng Triwahyono; Aishah Abdul Jalil; Zaiton Abdul Majid; Z. Ghazali; N. A. F. Othman; Didik Prasetyoko
A low cost adsorbent, banana stem fibers (BSFs), was used for modification by grafting with methacrylic acid via three free radical generation methods. The presence of poly(methacrylic acid) on the adsorbent surface was verified by FTIR, ESR and TG analyses. BSFs grafted via β-radiation (BSF-β) were proven to have a higher grafting yield which led to a higher Hg(II) adsorption capacity. A slight decrease in the equilibrium pH after the adsorption process was probably due to BSF-β acting as an acid-form ion-exchanger. The adsorption equilibrium uptake fitted well with the Freundlich isotherm model implying that Hg(II) adsorption occurred heterogeneously on the adsorption sites. The kinetics of adsorption follows a pseudo-first order model with an activation energy of 13.7 kJ mol−1 indicating that the adsorption undergoes an ion-exchange process. Thermodynamic studies illustrated that that the Hg(II) adsorption process was endothermic and non-spontaneous. Spent BSF-β was effectively regenerated with 0.1 M HCl and could be reused without any significance efficiency loss over at least six cycles of adsorption. The present investigation shows that BSF-β is a promising adsorbent for the removal and recovery of Hg(II) ions from aqueous solutions.
Journal of Analytical Science and Technology | 2016
Khalid Umar; Azmi Aris; Hilal Ahmad; Tabassum Parveen; Jafariah Jaafar; Zaiton Abdul Majid; A. Vijaya Bhaskar Reddy; Juhaizah Talib
BackgroundA simple hydrothermal process was applied to synthesize the doped TiO2 particles with different concentrations as well as different metal ions (Mn, Ce and La).MethodsThe synthesis of Mn-doped-TiO2 nanoparticles was done by using a hydrothermal method from hydrolysis of titanium tetrachloride in aqueous solution. The photocatalytic activities were checked by studying the degradation of two model organic pollutants.ResultsThe material was characterized by X-ray diffraction, scanning electron microscopy, and UV–Visible spectroscopy. The X-ray diffraction pattern studied for doped TiO2 particles suggests the anatase phase with a crystalline nature. Doped TiO2 particles showed a porous and complex nature with a highly rough surface. The photocatalytic activity of Mn- Ce- and La-doped TiO2 with different metal-ion concentrations of 0.15-0.60% show that the degradation rate of all of the pollutants increases with an increase in the dopant concentration from 0.15 to 0.45%, and a further increase in the dopant concentration decreased the degradation rate.ConclusionsThe results indicate that TiO2 with a concentration of 0.45% for all metal ions (Mn, Ce and La) shows the highest activity. Among studied dopent TiO2 with Mn (0.45%) showed the best degradation activity.