Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zalán Szabó is active.

Publication


Featured researches published by Zalán Szabó.


Journal of Bacteriology | 2003

Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity

Sonja-Verena Albers; Zalán Szabó; Arnold J. M. Driessen

A large number of secretory proteins in the thermoacidophile Sulfolobus solfataricus are synthesized as a precursor with an unusual leader peptide that resembles bacterial type IV prepilin signal sequences. This set of proteins includes the flagellin subunit but also various solute binding proteins. Here we describe the identification of the S. solfataricus homolog of bacterial type IV prepilin peptidases, termed PibD. PibD is an integral membrane protein that is phylogenetically related to the bacterial enzymes. When heterologously expressed in Escherichia coli, PibD is capable of processing both the flagellin and glucose-binding protein (GlcS) precursors. Site-directed mutagenesis of the GlcS signal peptide shows that the substrate specificity of PibD is consistent with the variations found in proteins with type IV prepilin-like signal sequences of S. solfataricus. We conclude that PibD is responsible for the processing of these secretory proteins in S. solfataricus.


Journal of Bacteriology | 2007

Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases

Zalán Szabó; Adriana Oliveira Stahl; Sonja V. Albers; Jessica C. Kissinger; Arnold J. M. Driessen; Mechthild Pohlschröder

Most secreted archaeal proteins are targeted to the membrane via a tripartite signal composed of a charged N terminus and a hydrophobic domain, followed by a signal peptidase-processing site. Signal peptides of archaeal flagellins, similar to class III signal peptides of bacterial type IV pilins, are distinct in that their processing sites precede the hydrophobic domain, which is crucial for assembly of these extracytoplasmic structures. To identify the complement of archaeal proteins with class III signal sequences, a PERL program (FlaFind) was written. A diverse set of proteins was identified, and many of these FlaFind positives were encoded by genes that were cotranscribed with homologs of pilus assembly genes. Moreover, structural conservation of primary sequences between many FlaFind positives and subunits of bacterial pilus-like structures, which have been shown to be critical for pilin assembly, have been observed. A subset of pilin-like FlaFind positives contained a conserved domain of unknown function (DUF361) within the signal peptide. Many of the genes encoding these proteins were in operons that contained a gene encoding a novel euryarchaeal prepilin-peptidase, EppA, homolog. Heterologous analysis revealed that Methanococcus maripaludis DUF361-containing proteins were specifically processed by the EppA homolog of this archaeon. Conversely, M. maripaludis preflagellins were cleaved only by the archaeal preflagellin peptidase FlaK. Together, the results reveal a diverse set of archaeal proteins with class III signal peptides that might be subunits of as-yet-undescribed cell surface structures, such as archaeal pili.


Nature Reviews Microbiology | 2006

Protein secretion in the Archaea: multiple paths towards a unique cell surface

Sonja-Verena Albers; Zalán Szabó; Arnold J. M. Driessen

Archaea are similar to other prokaryotes in most aspects of cell structure but are unique with respect to the lipid composition of the cytoplasmic membrane and the structure of the cell surface. Membranes of archaea are composed of glycerol-ether lipids instead of glycerol-ester lipids and are based on isoprenoid side chains, whereas the cell walls are formed by surface-layer proteins. The unique cell surface of archaea requires distinct solutions to the problem of how proteins cross this barrier to be either secreted into the medium or assembled as appendages at the cell surface.


Journal of Bacteriology | 2007

Flagellar Motility and Structure in the Hyperthermoacidophilic Archaeon Sulfolobus solfataricus

Zalán Szabó; Musa Sani; Maarten Groeneveld; Benham Zolghadr; James Schelert; Sonja-Verena Albers; Paul Blum; Egbert J. Boekema; Arnold J. M. Driessen

Flagellation in archaea is widespread and is involved in swimming motility. Here, we demonstrate that the structural flagellin gene from the crenarchaeaon Sulfolobus solfataricus is highly expressed in stationary-phase-grown cells and under unfavorable nutritional conditions. A mutant in a flagellar auxiliary gene, flaJ, was found to be nonmotile. Electron microscopic imaging of the flagellum indicates that the filaments are composed of right-handed helices.


Molecular Microbiology | 2007

Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus

Behnam Zolghadr; Stefan S. Weber; Zalán Szabó; Arnold J. M. Driessen; Sonja-Verena Albers

The hyperthermophilic archaeon Sulfolobus solfataricus contains an unusual large number of sugar binding proteins that are synthesized as precursors with a class III signal peptide. Such signal peptides are commonly used to direct archaeal flagellin subunits or bacterial (pseudo)pilins into extracellular macromolecular surface appendages. Likewise, S. solfataricus binding proteins have been suggested to assemble in higher ordered surface structures as well, tentatively termed the bindosome. Here we show that S. solfataricus contains a specific system that is needed for the functional surface localization of sugar binding proteins. This system, encoded by the bas (bindosome assembly system) operon, is composed of five proteins: basABC, three homologues of so‐called bacterial (pseudo)pilins; BasE, a cytoplasmic ATPase; and BasF, an integral membrane protein. Deletion of either the three (pseudo)pilin genes or the basEF genes resulted in a severe defect of the cells to grow on substrates which are transported by sugar binding proteins containing class III signal peptides, while growth on glucose and maltose was restored when the corresponding genes were reintroduced in these cells. Concomitantly, ΔbasABC and ΔbasEF cells were severely impaired in glucose uptake even though the sugar binding proteins were normally secreted across the cytoplasmic membrane. These data underline the hypothesis that the bas operon is involved in the functional localization of sugar binding proteins at the cell surface of S. solfataricus. In contrast to surface structure assembly systems of Gram‐negative bacteria, the bas operon seems to resemble an ancestral simplified form of these machineries.


PLOS ONE | 2011

Expression and In Vivo Rescue of Human ABCC6 Disease-Causing Mutants in Mouse Liver

Olivier Le Saux; Krisztina Fülöp; Yukiko Yamaguchi; Attila Iliás; Zalán Szabó; Christopher Brampton; Viola Pomozi; Krisztina Huszár; Tamás Arányi; András Váradi

Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application.


Journal of Bacteriology | 2006

Active-Site Residues in the Type IV Prepilin Peptidase Homologue PibD from the Archaeon Sulfolobus solfataricus

Zalán Szabó; Sonja-Verena Albers; Arnold J. M. Driessen

Archaeal preflagellin peptidases and bacterial type IV prepilin peptidases belong to a family of aspartic acid proteases that cleave the leader peptides of precursor proteins with type IV prepilin signal sequences. The substrate repertoire of PibD from the crenarchaeon Sulfolobus solfataricus is unusually diverse. In addition to flagellin, PibD cleaves three sugar-binding proteins unique to this species and a number of proteins with unknown function. Here we demonstrate that PibD contains two aspartic acid residues that are essential for cleavage activity. An additional pair of aspartic acids in a large cytoplasmic loop is also important for function and is possibly involved in leader peptide recognition. Combining the results of transmembrane segment predictions and cysteine-labeling experiments, we suggest a membrane topology model for PibD with the active-site aspartic acid residues exposed to the cytosol.


Current Drug Targets | 2011

ABCC6 as a Target in Pseudoxanthoma Elasticum

András Váradi; Zalán Szabó; Viola Pomozi; Hugues de Boussac; Krisztina Fülöp; Tamás Arányi

The ABCC6 gene encodes an organic anion transporter protein, ABCC6/MRP6. Mutations in the gene cause a rare, recessive genetic disease, pseudoxanthoma elasticum, while the loss of one ABCC6 allele is a genetic risk factor in coronary artery disease. We review here the information available on gene structure, evolution as well as the present knowledge on its transcriptional regulation. We give a detailed description of the characteristics of the protein, and analyze the relationship between the distributions of missense disease-causing mutations in the predicted three-dimensional structure of the transporter, which suggests functional importance of the domain-domain interactions. Though neither the physiological function of the protein nor its role in the pathobiology of the diseases are known, a current hypothesis that ABCC6 may be involved in the efflux of one form of Vitamin K from the liver is discussed. Finally, we analyze potential strategies how the gene can be targeted on the transcriptional level to increase protein expression in order to compensate for reduced activity. In addition, pharmacologic correction of trafficking-defect mutants or suppression of stop codon mutations as potential future therapeutic interventions are also reviewed.


Frontiers in Microbiology | 2012

Diversity and Subcellular Distribution of Archaeal Secreted Proteins

Zalán Szabó; Mechthild Pohlschröder

Secreted proteins make up a significant percentage of a prokaryotic proteome and play critical roles in important cellular processes such as polymer degradation, nutrient uptake, signal transduction, cell wall biosynthesis, and motility. The majority of archaeal proteins are believed to be secreted either in an unfolded conformation via the universally conserved Sec pathway or in a folded conformation via the Twin arginine transport (Tat) pathway. Extensive in vivo and in silico analyses of N-terminal signal peptides that target proteins to these pathways have led to the development of computational tools that not only predict Sec and Tat substrates with high accuracy but also provide information about signal peptide processing and targeting. Predictions therefore include indications as to whether a substrate is a soluble secreted protein, a membrane or cell wall anchored protein, or a surface structure subunit, and whether it is targeted for post-translational modification such as glycosylation or the addition of a lipid. The use of these in silico tools, in combination with biochemical and genetic analyses of transport pathways and their substrates, has resulted in improved predictions of the subcellular localization of archaeal secreted proteins, allowing for a more accurate annotation of archaeal proteomes, and has led to the identification of potential adaptations to extreme environments, as well as phyla-specific pathways among the archaea. A more comprehensive understanding of the transport pathways used and post-translational modifications of secreted archaeal proteins will also facilitate the identification and heterologous expression of commercially valuable archaeal enzymes.


Frontiers in Microbiology | 2015

The Structure of a Novel Thermophilic Esterase from the Planctomycetes Species, Thermogutta terrifontis Reveals an Open Active Site Due to a Minimal 'Cap' Domain.

Christopher Sayer; Zalán Szabó; Michail N. Isupov; Colin Ingham; Jennifer A. Littlechild

A carboxyl esterase (TtEst2) has been identified in a novel thermophilic bacterium, Thermogutta terrifontis from the phylum Planctomycetes and has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity toward small p-nitrophenyl (pNP) carboxylic esters with optimal activity for pNP-acetate. The enzyme shows moderate thermostability retaining 75% activity after incubation for 30 min at 70°C. The crystal structures have been determined for the native TtEst2 and its complexes with the carboxylic acid products propionate, butyrate, and valerate. TtEst2 differs from most enzymes of the α/β-hydrolase family 3 as it lacks the majority of the ‘cap’ domain and its active site cavity is exposed to the solvent. The bound ligands have allowed the identification of the carboxyl pocket in the enzyme active site. Comparison of TtEst2 with structurally related enzymes has given insight into how differences in their substrate preference can be rationalized based upon the properties of their active site pockets.

Collaboration


Dive into the Zalán Szabó's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

András Váradi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krisztina Fülöp

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tamás Arányi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Viola Pomozi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Attila Iliás

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xu Peng

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Christopher Brampton

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Georgios Skretas

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge