Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zandra E. Walton is active.

Publication


Featured researches published by Zandra E. Walton.


Nature | 2012

A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response

Zhao Chen; Katherine A. Cheng; Zandra E. Walton; Yuchuan Wang; Hiromichi Ebi; Takeshi Shimamura; Yan Liu; Tanya Tupper; Jing Ouyang; Jie Li; Peng Gao; Michele S. Woo; Chunxiao Xu; Masahiko Yanagita; Abigail Altabef; Shumei Wang; Charles Lee; Yuji Nakada; Christopher G. Peña; Yanping Sun; Yoko Franchetti; Catherine Yao; Amy Saur; Michael D. Cameron; Mizuki Nishino; D. Neil Hayes; Matthew D. Wilkerson; Patrick J. Roberts; Carrie B. Lee; Nabeel Bardeesy

Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors, has not been fully explored. Here we use genetically engineered mouse models to conduct a ‘co-clinical’ trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244) increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies.


Cancer Research | 2010

An ErbB3 Antibody, MM-121, Is Active in Cancers with Ligand-Dependent Activation

Birgit Schoeberl; Anthony C. Faber; Danan Li; Mei-Chih Liang; Katherine Crosby; Matthew Onsum; Olga Burenkova; Emily Pace; Zandra E. Walton; Lin Nie; Aaron Fulgham; Youngchul Song; Ulrik Nielsen; Jeffrey A. Engelman; Kwok-Kin Wong

ErbB3 is a critical activator of phosphoinositide 3-kinase (PI3K) signaling in epidermal growth factor receptor (EGFR; ErbB1), ErbB2 [human epidermal growth factor receptor 2 (HER2)], and [hepatocyte growth factor receptor (MET)] addicted cancers, and reactivation of ErbB3 is a prominent method for cancers to become resistant to ErbB inhibitors. In this study, we evaluated the in vivo efficacy of a therapeutic anti-ErbB3 antibody, MM-121. We found that MM-121 effectively blocked ligand-dependent activation of ErbB3 induced by either EGFR, HER2, or MET. Assessment of several cancer cell lines revealed that MM-121 reduced basal ErbB3 phosphorylation most effectively in cancers possessing ligand-dependent activation of ErbB3. In those cancers, MM-121 treatment led to decreased ErbB3 phosphorylation and, in some instances, decreased ErbB3 expression. The efficacy of single-agent MM-121 was also examined in xenograft models. A machine learning algorithm found that MM-121 was most effective against xenografts with evidence of ligand-dependent activation of ErbB3. We subsequently investigated whether MM-121 treatment could abrogate resistance to anti-EGFR therapies by preventing reactivation of ErbB3. We observed that an EGFR mutant lung cancer cell line (HCC827), made resistant to gefitinib by exogenous heregulin, was resensitized by MM-121. In addition, we found that a de novo lung cancer mouse model induced by EGFR T790M-L858R rapidly became resistant to cetuximab. Resistance was associated with an increase in heregulin expression and ErbB3 activation. However, concomitant cetuximab treatment with MM-121 blocked reactivation of ErbB3 and resulted in a sustained and durable response. Thus, these results suggest that targeting ErbB3 with MM-121 can be an effective therapeutic strategy for cancers with ligand-dependent activation of ErbB3.


Cancer Cell | 2010

Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors.

Julian Carretero; Takeshi Shimamura; Klarisa Rikova; Autumn L. Jackson; Matthew D. Wilkerson; Christa L. Borgman; Matthew S. Buttarazzi; Benjamin Sanofsky; Kate McNamara; Kathleyn A. Brandstetter; Zandra E. Walton; Ting Lei Gu; Katherine Crosby; Geoffrey I. Shapiro; Sauveur Michel Maira; Hongbin Ji; Diego H. Castrillon; Carla F. Kim; Carlos Garcia-Echeverria; Nabeel Bardeesy; Norman E. Sharpless; Neil Hayes; William Y. Kim; Jeffrey A. Engelman; Kwok-Kin Wong

In mice, Lkb1 deletion and activation of Kras(G12D) results in lung tumors with a high penetrance of lymph node and distant metastases. We analyzed these primary and metastatic de novo lung cancers with integrated genomic and proteomic profiles, and have identified gene and phosphoprotein signatures associated with Lkb1 loss and progression to invasive and metastatic lung tumors. These studies revealed that SRC is activated in Lkb1-deficient primary and metastatic lung tumors, and that the combined inhibition of SRC, PI3K, and MEK1/2 resulted in synergistic tumor regression. These studies demonstrate that integrated genomic and proteomic analyses can be used to identify signaling pathways that may be targeted for treatment.


Cancer Discovery | 2015

MYC, Metabolism, and Cancer

Zachary E. Stine; Zandra E. Walton; Brian J. Altman; Annie L. Hsieh; Chi V. Dang

UNLABELLED The MYC oncogene encodes a transcription factor, MYC, whose broad effects make its precise oncogenic role enigmatically elusive. The evidence to date suggests that MYC triggers selective gene expression amplification to promote cell growth and proliferation. Through its targets, MYC coordinates nutrient acquisition to produce ATP and key cellular building blocks that increase cell mass and trigger DNA replication and cell division. In cancer, genetic and epigenetic derangements silence checkpoints and unleash MYCs cell growth- and proliferation-promoting metabolic activities. Unbridled growth in response to deregulated MYC expression creates dependence on MYC-driven metabolic pathways, such that reliance on specific metabolic enzymes provides novel targets for cancer therapy. SIGNIFICANCE MYCs expression and activity are tightly regulated in normal cells by multiple mechanisms, including a dependence upon growth factor stimulation and replete nutrient status. In cancer, genetic deregulation of MYC expression and loss of checkpoint components, such as TP53, permit MYC to drive malignant transformation. However, because of the reliance of MYC-driven cancers on specific metabolic pathways, synthetic lethal interactions between MYC overexpression and specific enzyme inhibitors provide novel cancer therapeutic opportunities.


Cancer Cell | 2011

Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors.

Thomas De Raedt; Zandra E. Walton; Jessica L. Yecies; Danan Li; Yimei Chen; Clare F. Malone; Ophélia Maertens; Seung Min Jeong; Roderick T. Bronson; Valerie S. LeBleu; Raghu Kalluri; Emmanuel Normant; Marcia C. Haigis; Brendan D. Manning; Kwok-Kin Wong; Kay F. Macleod; Karen Cichowski

Ras-driven tumors are often refractory to conventional therapies. Here we identify a promising targeted therapeutic strategy for two Ras-driven cancers: Nf1-deficient malignancies and Kras/p53 mutant lung cancer. We show that agents that enhance proteotoxic stress, including the HSP90 inhibitor IPI-504, induce tumor regression in aggressive mouse models, but only when combined with rapamycin. These agents synergize by promoting irresolvable ER stress, resulting in catastrophic ER and mitochondrial damage. This process is fueled by oxidative stress, which is caused by IPI-504-dependent production of reactive oxygen species, and the rapamycin-dependent suppression of glutathione, an important endogenous antioxidant. Notably, the mechanism by which these agents cooperate reveals a therapeutic paradigm that can be expanded to develop additional combinations.


Nature Medicine | 2011

Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition

Neil Johnson; Yu-Chen Li; Zandra E. Walton; Katherine A. Cheng; Danan Li; Scott J. Rodig; Lisa A. Moreau; Christine Unitt; Roderick T. Bronson; Huw D. Thomas; David R. Newell; Alan D. D'Andrea; Nicola J. Curtin; Kwok-Kin Wong; Geoffrey I. Shapiro

Cells that are deficient in homologous recombination, such as those that lack functional breast cancer–associated 1 (BRCA1) or BRCA2, are hypersensitive to inhibition of poly(ADP-ribose) polymerase (PARP). However, BRCA-deficient tumors represent only a small fraction of adult cancers, which might restrict the therapeutic utility of PARP inhibitor monotherapy. Cyclin-dependent kinase 1 (Cdk1) phosphorylates BRCA1, and this is essential for efficient formation of BRCA1 foci. Here we show that depletion or inhibition of Cdk1 compromises the ability of cells to repair DNA by homologous recombination. Combined inhibition of Cdk1 and PARP in BRCA–wild-type cancer cells resulted in reduced colony formation, delayed growth of human tumor xenografts and tumor regression with prolonged survival in a mouse model of lung adenocarcinoma. Inhibition of Cdk1 did not sensitize nontransformed cells or tissues to inhibition of PARP. Because reduced Cdk1 activity impaired BRCA1 function and consequently, repair by homologous recombination, inhibition of Cdk1 represents a plausible strategy for expanding the utility of PARP inhibitors to BRCA-proficient cancers.


Nature | 2014

Fructose-1,6-bisphosphatase opposes renal carcinoma progression

Bo Li; Bo Qiu; D. M. Lee; Zandra E. Walton; Joshua D. Ochocki; Lijoy K. Mathew; Anthony Mancuso; T. Gade; Brian Keith; Itzhak Nissim; M. Celeste Simon

Clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, is characterized by elevated glycogen levels and fat deposition. These consistent metabolic alterations are associated with normoxic stabilization of hypoxia-inducible factors (HIFs) secondary to von Hippel–Lindau (VHL) mutations that occur in over 90% of ccRCC tumours. However, kidney-specific VHL deletion in mice fails to elicit ccRCC-specific metabolic phenotypes and tumour formation, suggesting that additional mechanisms are essential. Recent large-scale sequencing analyses revealed the loss of several chromatin remodelling enzymes in a subset of ccRCC (these included polybromo-1, SET domain containing 2 and BRCA1-associated protein-1, among others), indicating that epigenetic perturbations are probably important contributors to the natural history of this disease. Here we used an integrative approach comprising pan-metabolomic profiling and metabolic gene set analysis and determined that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) is uniformly depleted in over six hundred ccRCC tumours examined. Notably, the human FBP1 locus resides on chromosome 9q22, the loss of which is associated with poor prognosis for ccRCC patients. Our data further indicate that FBP1 inhibits ccRCC progression through two distinct mechanisms. First, FBP1 antagonizes glycolytic flux in renal tubular epithelial cells, the presumptive ccRCC cell of origin, thereby inhibiting a potential Warburg effect. Second, in pVHL (the protein encoded by the VHL gene)-deficient ccRCC cells, FBP1 restrains cell proliferation, glycolysis and the pentose phosphate pathway in a catalytic-activity-independent manner, by inhibiting nuclear HIF function via direct interaction with the HIF inhibitory domain. This unique dual function of the FBP1 protein explains its ubiquitous loss in ccRCC, distinguishing FBP1 from previously identified tumour suppressors that are not consistently mutated in all tumours.


Cancer Cell | 2014

Loss of Lkb1 and Pten Leads to Lung Squamous Cell Carcinoma with Elevated PD-L1 Expression

Chunxiao Xu; Christine M. Fillmore; Shohei Koyama; Hongbo Wu; Yanqiu Zhao; Zhao Chen; Grit S. Herter-Sprie; Esra A. Akbay; Jeremy H. Tchaicha; Abigail Altabef; Jacob B. Reibel; Zandra E. Walton; Hongbin Ji; Hideo Watanabe; Pasi A. Jänne; Diego H. Castrillon; Anil K. Rustgi; Adam J. Bass; Gordon J. Freeman; Robert F. Padera; Glenn Dranoff; Peter S. Hammerman; Carla F. Kim; Kwok-Kin Wong

Lung squamous cell carcinoma (SCC) is a deadly disease for which current treatments are inadequate. We demonstrate that biallelic inactivation of Lkb1 and Pten in the mouse lung leads to SCC that recapitulates the histology, gene expression, and microenvironment found in human disease. Lkb1;Pten null (LP) tumors expressed the squamous markers KRT5, p63 and SOX2, and transcriptionally resembled the basal subtype of human SCC. In contrast to mouse adenocarcinomas, the LP tumors contained immune populations enriched for tumor-associated neutrophils. SCA1(+)NGFR(+) fractions were enriched for tumor-propagating cells (TPCs) that could serially transplant the disease in orthotopic assays. TPCs in the LP model and NGFR(+) cells in human SCCs highly expressed Pd-ligand-1 (PD-L1), suggesting a mechanism of immune escape for TPCs.


Cancer Cell | 2012

ATF4 Regulates MYC-Mediated Neuroblastoma Cell Death upon Glutamine Deprivation

Guoliang Qing; Bo Li; Annette Vu; Nicolas Skuli; Zandra E. Walton; Xueyuan Liu; Patrick A. Mayes; David R. Wise; Craig B. Thompson; John M. Maris; Michael D. Hogarty; M. Celeste Simon

Oncogenic Myc alters mitochondrial metabolism, making it dependent on exogenous glutamine (Gln) for cell survival. Accordingly, Gln deprivation selectively induces apoptosis in MYC-overexpressing cells via unknown mechanisms. Using MYCN-amplified neuroblastoma as a model, we identify PUMA, NOXA, and TRB3 as executors of Gln-starved cells. Gln depletion in MYC-transformed cells induces apoptosis through ATF4-dependent, but p53-independent, PUMA and NOXA induction. MYC-transformed cells depend on both glutamate-oxaloacetate transaminase and glutamate dehydrogenase to maintain Gln homeostasis and suppress apoptosis. Consequently, either ATF4 agonists or glutaminolysis inhibitors potently induce apoptosis in vitro and inhibit tumor growth in vivo. These results reveal mechanisms whereby Myc sensitizes cells to apoptosis, and validate ATF4 agonists and inhibitors of Gln metabolism as potential Myc-selective cancer therapeutics.


The EMBO Journal | 2014

Tumor‐propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis

Allison N. Lau; Stephen Curtis; Christine M. Fillmore; Samuel P. Rowbotham; Morvarid Mohseni; Darcy E. Wagner; Alexander M. Beede; Daniel T. Montoro; Kerstin W. Sinkevicius; Zandra E. Walton; Juliana Barrios; Daniel J. Weiss; Fernando D. Camargo; Kwok-Kin Wong; Carla F. Kim

Metastasis is the leading cause of morbidity for lung cancer patients. Here we demonstrate that murine tumor propagating cells (TPCs) with the markers Sca1 and CD24 are enriched for metastatic potential in orthotopic transplantation assays. CD24 knockdown decreased the metastatic potential of lung cancer cell lines resembling TPCs. In lung cancer patient data sets, metastatic spread and patient survival could be stratified with a murine lung TPC gene signature. The TPC signature was enriched for genes in the Hippo signaling pathway. Knockdown of the Hippo mediators Yap1 or Taz decreased in vitro cellular migration and transplantation of metastatic disease. Furthermore, constitutively active Yap was sufficient to drive lung tumor progression in vivo. These results demonstrate functional roles for two different pathways, CD24‐dependent and Yap/Taz‐dependent pathways, in lung tumor propagation and metastasis. This study demonstrates the utility of TPCs for identifying molecules contributing to metastatic lung cancer, potentially enabling the therapeutic targeting of this devastating disease.

Collaboration


Dive into the Zandra E. Walton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi V. Dang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amy H. Tang

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Liao

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Brian J. Altman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Carla F. Kim

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge