Carla F. Kim
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carla F. Kim.
Cell | 2005
Carla F. Kim; Erica L. Jackson; Amber Woolfenden; Sharon Lawrence; Imran Babar; Sinae Vogel; Denise Crowley; Roderick T. Bronson; Tyler Jacks
Injury models have suggested that the lung contains anatomically and functionally distinct epithelial stem cell populations. We have isolated such a regional pulmonary stem cell population, termed bronchioalveolar stem cells (BASCs). Identified at the bronchioalveolar duct junction, BASCs were resistant to bronchiolar and alveolar damage and proliferated during epithelial cell renewal in vivo. BASCs exhibited self-renewal and were multipotent in clonal assays, highlighting their stem cell properties. Furthermore, BASCs expanded in response to oncogenic K-ras in culture and in precursors of lung tumors in vivo. These data support the hypothesis that BASCs are a stem cell population that maintains the bronchiolar Clara cells and alveolar cells of the distal lung and that their transformed counterparts give rise to adenocarcinoma. Although bronchiolar cells and alveolar cells are proposed to be the precursor cells of adenocarcinoma, this work points to BASCs as the putative cells of origin for this subtype of lung cancer.
Nature Reviews Cancer | 2014
Zhao Chen; Christine M. Fillmore; Peter S. Hammerman; Carla F. Kim; Kwok-Kin Wong
Non-small-cell lung cancers (NSCLCs), the most common lung cancers, are known to have diverse pathological features. During the past decade, in-depth analyses of lung cancer genomes and signalling pathways have further defined NSCLCs as a group of distinct diseases with genetic and cellular heterogeneity. Consequently, an impressive list of potential therapeutic targets was unveiled, drastically altering the clinical evaluation and treatment of patients. Many targeted therapies have been developed with compelling clinical proofs of concept; however, treatment responses are typically short-lived. Further studies of the tumour microenvironment have uncovered new possible avenues to control this deadly disease, including immunotherapy.
Cancer Cell | 2010
Julian Carretero; Takeshi Shimamura; Klarisa Rikova; Autumn L. Jackson; Matthew D. Wilkerson; Christa L. Borgman; Matthew S. Buttarazzi; Benjamin Sanofsky; Kate McNamara; Kathleyn A. Brandstetter; Zandra E. Walton; Ting Lei Gu; Katherine Crosby; Geoffrey I. Shapiro; Sauveur Michel Maira; Hongbin Ji; Diego H. Castrillon; Carla F. Kim; Carlos Garcia-Echeverria; Nabeel Bardeesy; Norman E. Sharpless; Neil Hayes; William Y. Kim; Jeffrey A. Engelman; Kwok-Kin Wong
In mice, Lkb1 deletion and activation of Kras(G12D) results in lung tumors with a high penetrance of lymph node and distant metastases. We analyzed these primary and metastatic de novo lung cancers with integrated genomic and proteomic profiles, and have identified gene and phosphoprotein signatures associated with Lkb1 loss and progression to invasive and metastatic lung tumors. These studies revealed that SRC is activated in Lkb1-deficient primary and metastatic lung tumors, and that the combined inhibition of SRC, PI3K, and MEK1/2 resulted in synergistic tumor regression. These studies demonstrate that integrated genomic and proteomic analyses can be used to identify signaling pathways that may be targeted for treatment.
Cancer Cell | 2014
Chunxiao Xu; Christine M. Fillmore; Shohei Koyama; Hongbo Wu; Yanqiu Zhao; Zhao Chen; Grit S. Herter-Sprie; Esra A. Akbay; Jeremy H. Tchaicha; Abigail Altabef; Jacob B. Reibel; Zandra E. Walton; Hongbin Ji; Hideo Watanabe; Pasi A. Jänne; Diego H. Castrillon; Anil K. Rustgi; Adam J. Bass; Gordon J. Freeman; Robert F. Padera; Glenn Dranoff; Peter S. Hammerman; Carla F. Kim; Kwok-Kin Wong
Lung squamous cell carcinoma (SCC) is a deadly disease for which current treatments are inadequate. We demonstrate that biallelic inactivation of Lkb1 and Pten in the mouse lung leads to SCC that recapitulates the histology, gene expression, and microenvironment found in human disease. Lkb1;Pten null (LP) tumors expressed the squamous markers KRT5, p63 and SOX2, and transcriptionally resembled the basal subtype of human SCC. In contrast to mouse adenocarcinomas, the LP tumors contained immune populations enriched for tumor-associated neutrophils. SCA1(+)NGFR(+) fractions were enriched for tumor-propagating cells (TPCs) that could serially transplant the disease in orthotopic assays. TPCs in the LP model and NGFR(+) cells in human SCCs highly expressed Pd-ligand-1 (PD-L1), suggesting a mechanism of immune escape for TPCs.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2012
Kristen A. Tropea; Eva Leder; Muhammad Aslam; Allison N. Lau; David M. Raiser; Joo-Hyeon Lee; Vivek Balasubramaniam; S. Alex Mitsialis; Stella Kourembanas; Carla F. Kim
Bronchopulmonary dysplasia (BPD) remains a major complication of prematurity resulting in significant morbidity and mortality. The pathology of BPD is multifactorial and leads to alveolar simplification and distal lung injury. Previous studies have shown a beneficial effect of systemic treatment with bone marrow-derived mesenchymal stromal cells (MSCs) and MSC-conditioned media (MSC-CM) leading to amelioration of the lung parenchymal and vascular injury in vivo in the hyperoxia murine model of BPD. It is possible that the beneficial response from the MSCs is at least in part due to activation of endogenous lung epithelial stem cells. Bronchioalveolar stem cells (BASCs) are an adult lung stem cell population capable of self-renewal and differentiation in culture, and BASCs proliferate in response to bronchiolar and alveolar lung injury in vivo. Systemic treatment of neonatal hyperoxia-exposed mice with MSCs or MSC-CM led to a significant increase in BASCs compared with untreated controls. Treatment of BASCs with MSC-CM in culture showed an increase in growth efficiency, indicating a direct effect of MSCs on BASCs. Lineage tracing data in bleomycin-treated adult mice showed that Clara cell secretory protein-expressing cells including BASCs are capable of contributing to alveolar repair after lung injury. MSCs and MSC-derived factors may stimulate BASCs to play a role in the repair of alveolar lung injury found in BPD and in the restoration of distal lung cell epithelia. This work highlights the potential important role of endogenous lung stem cells in the repair of chronic lung diseases.
Nature Cell Biology | 2014
Morvarid Mohseni; Jianlong Sun; Allison N. Lau; Stephen Curtis; Jeffrey D. Goldsmith; Victor L. Fox; Chongjuan Wei; Marsha L. Frazier; Owen Samson; Kwok K. Wong; Carla F. Kim; Fernando D. Camargo
The Hippo–YAP pathway is an emerging signalling cascade involved in the regulation of stem cell activity and organ size. To identify components of this pathway, we performed an RNAi-based kinome screen in human cells. Our screen identified several kinases not previously associated with Hippo signalling that control multiple cellular processes. One of the hits, LKB1, is a common tumour suppressor whose mechanism of action is only partially understood. We demonstrate that LKB1 acts through its substrates of the microtubule affinity-regulating kinase family to regulate the localization of the polarity determinant Scribble and the activity of the core Hippo kinases. Our data also indicate that YAP is functionally important for the tumour suppressive effects of LKB1. Our results identify a signalling axis that links YAP activation with LKB1 mutations, and have implications for the treatment of LKB1-mutant human malignancies. In addition, our findings provide insight into upstream signals of the Hippo–YAP signalling cascade.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Jennifer Shepard Dovey; Sima Zacharek; Carla F. Kim; Jacqueline A. Lees
Understanding the pathways that control epithelial carcinogenesis is vital to the development of effective treatments. The Polycomb group family member Bmi1 is overexpressed in numerous epithelial tumors, but its role in their development has not been established. We now show a key role for Bmi1 in lung adenocarcinoma. Whereas lung development occurs normally in Bmi1-deficient mice, loss of Bmi1 decreases the number and progression of lung tumors at a very early point in an oncogenic K-ras-initiated mouse model of lung cancer. This correlates with a defect in the ability of Bmi1-deficient putative bronchiolalveolar stem cells (BASCs) to proliferate in response to the oncogenic stimulus. Notably, in the absence of oncogenic K-ras, Bmi1-deficient BASCs show impaired proliferation and self-renewal capacity in culture and after lung injury in vivo. Abrogated lung cancer development and BASC self-renewal occur partially in a p19ARF-dependent manner. Our data suggest that Bmi1 deficiency suppresses tumor development by limiting the expansion potential of BASCs, the apparent lung cancer cells of origin. Because Bmi1 is elevated in additional tumor types, this suggests that Bmi1 plays a key role in regulating proliferation of both stem cells and tumor cells in diverse adult epithelial tissues.
Cancer Research | 2007
Joseph L. Kissil; Marita Walmsley; Linda Hanlon; Kevin M. Haigis; Carla F. Kim; Alejandro Sweet-Cordero; Matthew S. Eckman; David A. Tuveson; Anthony J. Capobianco; Victor L. J. Tybulewicz; Tyler Jacks
Given the prevalence of Ras mutations in human cancer, it is critical to understand the effector pathways downstream of oncogenic Ras leading to transformation. To directly assess the requirement for Rac1 in K-ras-induced tumorigenesis, we employed a model of lung cancer in which an oncogenic allele of K-ras could be activated by Cre-mediated recombination in the presence or absence of conditional deletion of Rac1. We show that Rac1 function is required for tumorigenesis in this model. Furthermore, although Rac1 deletion alone was compatible with cell viability and proliferation, when combined with K-ras activation in primary epithelial cells, loss of Rac1 caused a profound reduction in proliferation. These data show a specific requirement for Rac1 function in cells expressing oncogenic K-ras.
Cell Stem Cell | 2010
Stephen Curtis; Kerstin W. Sinkevicius; Danan Li; Allison N. Lau; Rebecca R. Roach; Raffaella Zamponi; Amber Woolfenden; David G. Kirsch; Kwok-Kin Wong; Carla F. Kim
Successful cancer therapy requires the elimination or incapacitation of all tumor cells capable of regenerating a tumor. Therapeutic advances therefore necessitate the characterization of the cells that are able to propagate a tumor in vivo. We show an important link between tumor genotype and isolation of tumor-propagating cells (TPCs). Three mouse models of the most common form of human lung cancer each had TPCs with a unique cell-surface phenotype. The cell-surface marker Sca1 did not enrich for TPCs in tumors initiated with oncogenic Kras, and only Sca1-negative cells propagated EGFR mutant tumors. In contrast, Sca1-positive cells were enriched for tumor-propagating activity in Kras tumors with p53 deficiency. Primary tumors that differ in genotype at just one locus can therefore have tumor-propagating cell populations with distinct markers. Our studies show that the genotype of tumor samples must be considered in studies to identify, characterize, and target tumor-propagating cells.
Nature | 2015
Christine M. Fillmore; Chunxiao Xu; Pooja T. Desai; Joanne M. Berry; Samuel P. Rowbotham; Yi-Jang Lin; Haikuo Zhang; Victor E. Marquez; Peter S. Hammerman; Kwok-Kin Wong; Carla F. Kim
Non-small-cell lung cancer is the leading cause of cancer-related death worldwide. Chemotherapies such as the topoisomerase II (TopoII) inhibitor etoposide effectively reduce disease in a minority of patients with this cancer; therefore, alternative drug targets, including epigenetic enzymes, are under consideration for therapeutic intervention. A promising potential epigenetic target is the methyltransferase EZH2, which in the context of the polycomb repressive complex 2 (PRC2) is well known to tri-methylate histone H3 at lysine 27 (H3K27me3) and elicit gene silencing. Here we demonstrate that EZH2 inhibition has differential effects on the TopoII inhibitor response of non-small-cell lung cancers in vitro and in vivo. EGFR and BRG1 mutations are genetic biomarkers that predict enhanced sensitivity to TopoII inhibitor in response to EZH2 inhibition. BRG1 loss-of-function mutant tumours respond to EZH2 inhibition with increased S phase, anaphase bridging, apoptosis and TopoII inhibitor sensitivity. Conversely, EGFR and BRG1 wild-type tumours upregulate BRG1 in response to EZH2 inhibition and ultimately become more resistant to TopoII inhibitor. EGFR gain-of-function mutant tumours are also sensitive to dual EZH2 inhibition and TopoII inhibitor, because of genetic antagonism between EGFR and BRG1. These findings suggest an opportunity for precision medicine in the genetically complex disease of non-small-cell lung cancer.