Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zarema Arbieva is active.

Publication


Featured researches published by Zarema Arbieva.


BMC Genomics | 2010

Positional differences in the wound transcriptome of skin and oral mucosa

Lin Chen; Zarema Arbieva; Shujuan Guo; Phillip T. Marucha; Thomas A. Mustoe; Luisa A. DiPietro

BackgroundWhen compared to skin, oral mucosal wounds heal rapidly and with reduced scar formation. Recent studies suggest that intrinsic differences in inflammation, growth factor production, levels of stem cells, and cellular proliferation capacity may underlie the exceptional healing that occurs in oral mucosa. The current study was designed to compare the transcriptomes of oral mucosal and skin wounds in order to identify critical differences in the healing response at these two sites using an unbiased approach.ResultsUsing microarray analysis, we explored the differences in gene expression in skin and oral mucosal wound healing in a murine model of paired equivalent sized wounds. Samples were examined from days 0 to 10 and spanned all stages of the wound healing process. Using unwounded matched tissue as a control, filtering identified 1,479 probe sets in skin wounds yet only 502 probe sets in mucosal wounds that were significantly differentially expressed over time. Clusters of genes that showed similar patterns of expression were also identified in each wound type. Analysis of functionally related gene expression demonstrated dramatically different reactions to injury between skin and mucosal wounds. To explore whether site-specific differences might be derived from intrinsic differences in cellular responses at each site, we compared the response of isolated epithelial cells from skin and oral mucosa to a defined in vitro stimulus. When cytokine levels were measured, epithelial cells from skin produced significantly higher amounts of proinflammatory cytokines than cells from oral mucosa.ConclusionsThe results provide the first detailed molecular profile of the site-specific differences in the genetic response to injury in mucosa and skin, and suggest the divergent reactions to injury may derive from intrinsic differences in the cellular responses at each site.


Oncogene | 2001

A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31

Zhenbo Hu; Ignatius Gomes; Stephen K. Horrigan; Jelena Kravarusic; Brenton G. Mar; Zarema Arbieva; Brent Chyna; Noreen Fulton; Seby Edassery; Azra Raza; Carol A. Westbrook

Interstitial deletion or loss of chromosome 5, del(5q) or −5, is a frequent finding in myeloid leukemias and myelodysplasias, suggesting the presence of a tumor suppressor gene within the deleted region. In our search for this gene, we identified a candidate, 5qNCA (LOC51780), which lies within a consistently-deleted segment of 5q31. 5qNCA expresses a 7.2-kb transcript with a 5286-bp open reading frame which is present at high levels in heart, skeletal muscle, kidney, placenta, and liver as well as CD34+ cells and AML cell lines. 5qNCA encodes a 191-kD nuclear protein which contains a highly-conserved C-terminus containing a zinc finger with the unique spacing Cys-X2-Cys-X7-His-X2-Cys-X2-Cys-X4-Cys-X2-Cys and a jmjC domain, which is often found in proteins that regulate chromatin remodeling. Expression of 5qNCA in a del(5q) cell line results in suppression of clonogenic growth. Preliminary sequence results in AML and MDS samples and cell lines has revealed a possible mutation in the KG-1 cell line resulting in a THR to ALA substitution that has not been found in over 100 normal alleles to date. We propose 5qNCA is a good candidate for the del(5q) tumor suppressor gene based on its predicted function and growth suppressive activities, and suggest that further mutational and functional study of this interesting gene is warranted.


American Journal of Pathology | 2005

Chromatin Organization Measured by AluI Restriction Enzyme Changes with Malignancy and Is Regulated by the Extracellular Matrix and the Cytoskeleton

Andrew J. Maniotis; Klara Valyi-Nagy; John Karavitis; Jonas Moses; Viveka Boddipali; Ying Wang; Rafael Nunez; Suman Setty; Zarema Arbieva; Mina J. Bissell; Robert Folberg

Given that expression of many genes changes when cells become malignant or are placed in different microenvironments, we asked whether these changes were accompanied by global reorganization of chromatin. We reasoned that sequestration or exposure of chromatin-sensitive sites to restriction enzymes could be used to detect this reorganization. We found that AluI-sensitive sites of nonmalignant cells were relatively more exposed compared to their malignant counterparts in cultured cells and human tumor samples. Changes in exposure and sequestration of AluI-sensitive sites in normal fibroblasts versus fibrosarcoma or those transfected with oncogenes, nonmalignant breast cells versus carcinomas and poorly metastatic versus highly invasive melanoma were shown to be independent of the cell cycle and may be influenced by proteins rich in disulfide bonds. Remarkably, regardless of degree of malignancy, AluI-sensitive sites became profoundly sequestered when cells were incubated with laminin, Matrigel, or a circular RGD peptide (RGD-C), but became exposed when cells were placed on collagen I or in serum-containing medium. Disruption of the actin cytoskeleton led to exposure, whereas disruption of microtubules or intermediate filaments exerted a sequestering effect. Thus, AluI-sensitive sites are more sequestered with increasing malignant behavior, but the sequestration and exposure of these sites is exquisitely sensitive to information conferred to the cell by molecules and biomechanical forces that regulate cellular and tissue architecture.


BMC Genomics | 2012

Analysis of lead toxicity in human cells

Bruce S. Gillis; Zarema Arbieva; Igor M. Gavin

BackgroundLead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity.ResultsWe analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were altered in subjects with high zinc protoporphyrin blood levels.ConclusionsThe results of our study defined specific changes in gene and protein expression in response to lead challenges and determined the injurious effects of exposures to lead on a cellular level. This information can be used for documenting the health effects of exposures to lead which will facilitate identifying and monitoring efficacious treatments for lead-related maladies.


Molecular Ecology Resources | 2014

Restriction site-associated DNA sequencing generates high-quality single nucleotide polymorphisms for assessing hybridization between bighead and silver carp in the United States and China

James T. Lamer; Greg G. Sass; Jason Q. Boone; Zarema Arbieva; Stefan J. Green; John M. Epifanio

Bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are invasive species and listed as US federally injurious species under the Lacy Act. They have established populations in much of the Mississippi River Basin (MRB; Mississippi, Illinois, and Missouri rivers) and are capable of producing fertile hybrids and complex introgression. Characterizing the composition of this admixture requires a large set of high‐quality, evolutionarily conserved, diagnostic genetic markers to aid in the identification and management of these species in the midst of morphological ambiguity. Restriction site‐associated DNA (RAD) sequencing of 45 barcoded bighead and silver carp from the United States and China produced reads that were aligned to the silver carp transcriptome yielded 261 candidate single nucleotide polymorphisms (SNPs) with fixed allelic differences between the two species. We selected the highest quality 112 SNP loci for validation using 194 putative pure‐species and F1 hybrids from the MRB and putative bighead carp and silver carp pure species from China (Amur, Pearl and Yangtze rivers). Fifty SNPs were omitted due to design/amplification failure or lack of diagnostic utility. A total of 57 species‐diagnostic SNPs conserved between carp species in US and Chinese rivers were identified; 32 were annotated to functional gene loci. Twenty‐seven of the 181 (15%) putative pure species were identified as hybrid backcrosses after validation, including three backcrosses from the Amur River, where hybridization has not been documented previously. The 57 SNPs identified through RAD sequencing provide a diagnostic tool to detect population admixture and to identify hybrid and pure‐species Asian carps in the United States and China.


Molecular and Cellular Endocrinology | 2006

Paracrine-stimulated gene expression profile favors estradiol production in breast tumors

Sanober Amin; Chiang Ching Huang; Scott Reierstad; Zhihong Lin; Zarema Arbieva; Elizabeth L. Wiley; Hossain Saborian; Ben P. Haynes; Helen Cotterill; Mitch Dowsett; Serdar E. Bulun

Paracrine interactions between adipose fibroblasts and malignant epithelial cells are essential for structural and hormonal support of breast tumors. Factors derived from malignant epithelial cells inhibit adipogenic differentiation of fibroblasts and upregulate expression of aromatase, which stimulates estrogen synthesis and creates a localized, growth-stimulatory environment. Here, we characterized the gene expression profile of breast adipose fibroblasts in an in vitro model of malignancy to identify other paracrine interactions that support tumor growth. Primary breast adipose fibroblasts from cancer-free women were treated with conditioned media from malignant breast epithelial cells or normal breast epithelial cells, and differences in gene expression were identified by microarray. A total of 79 differentially regulated genes encoding cytokines, enzymes, angiogenic factors, cytoskeletal proteins, extra-cellular matrix remodeling proteins, signal transduction proteins and cell surface receptors were identified, and 6 of these were verified by real-time PCR. Among these, the expression of aldo-keto reductase family 1, member C3 (AKR1C3) was upregulated. AKR1C3 has multiple enzymatic properties, including conversion of estrone to estradiol and androstenedione to testosterone. Immunoreactive AKR1C3 was detected in epithelial and stromal components of benign lesions and ductal carcinomas in situ, and in 59.8% of epithelial and 69.6% of stromal cells in invasive breast carcinomas. AKR1C3 expression was significantly higher in myoepithelial cells surrounding the neoplastic epithelium of ductal carcinoma in situ compared with those surrounding benign epithelial lesions. Importantly, AKR1C3 and aromatase mRNA levels correlated positively in 61 malignant breast tumors (R=0.3967, p=0.00156). Malignant epithelial cell-conditioned medium significantly increased formation of testosterone and estradiol from androstenedione in breast adipose fibroblasts. In conclusion, malignant epithelial cell-derived factors significantly upregulate the enzymes AKR1C3 and aromatase that catalyze a series of complementary reactions to convert the circulating precursor androstenedione to biologically active estradiol in vitro in the stromal fibroblasts, and in vivo, in stromal component of breast tumors.


Molecular Ecology | 2015

Diagnostic SNPs reveal widespread introgressive hybridization between introduced bighead and silver carp in the Mississippi River Basin

James T. Lamer; Blake C. Ruebush; Zarema Arbieva; Michael A. McClelland; John M. Epifanio; Greg G. Sass

Hybridization among conspecifics in native and introduced habitats has important implications for biological invasions in new ecosystems. Bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are genetically isolated and occur in sympatry within their native range. Following their introduction to North America, however, introgressant hybrids have been reported throughout their expanded range within the Mississippi River Basin (MRB). The extent of introgression, both spatially and generationally, is largely unknown. Therefore, we examined mixed‐species populations from across the MRB to characterize the extent of interspecific gene flow. We assayed 2798 individuals from nine locations with a suite of species‐diagnostic SNPs (57 nuclear and one mitochondrial). Forty‐four per cent (n = 1244) of individuals displayed hybrid genotypes. Moreover, the composition of hybrid genotypes varied among locations and represented complex hybrid swarms with multiple generations of gene flow. Introgressive hybrids were identified from all locations, were bidirectional and followed a bimodal distribution consisting primarily of parental or parental‐like genotypes and phenotypes. All described hybrid categories were present among individuals from 1999 to 2008, with parents and later‐generation backcrosses representing the largest proportion of individuals among years. Our mitochondrial SNP (COII), tested on a subset of 730 individuals, revealed a silver carp maternal bias in 13 of 21 (62%) F1 hybrids, in all silver carp backcrosses, and maintained throughout many of the bighead carp backcrosses. The application of this suite of diagnostic markers and the spatial coverage permits a deeper examination of the complexity in hybrid swarms between two invasive, introduced species.


PLOS ONE | 2015

Correlative Analysis of miRNA Expression and Oncotype Dx Recurrence Score in Estrogen Receptor Positive Breast Carcinomas

Rajyasree Emmadi; Emanuele Canestrari; Zarema Arbieva; Wenbo Mu; Yang Dai; Jonna Frasor; Elizabeth L. Wiley

Altered expression of miRNAs has been observed in many types of cancer, including breast cancer, and shown to contribute to cancer growth, aggressiveness, and response to therapies. In this pilot study, we investigated the possible correlation of miRNAs with risk of recurrence of estrogen receptor positive, lymph node-negative mammary carcinomas as determined by the Oncotype DX® Breast Cancer assay. To accomplish this, we extracted RNA from a collection of breast carcinomas that had previously been analyzed by Oncotype DX®. Multiple Let-7 family members were negatively correlated with the recurrence score (RS), which is consistent with their tumor suppressor properties. Additional miRNAs were found to positively correlate with RS, including miR-377-5p, miR-633b, miR-548t and miR-3648. Pathway analysis of putative and validated targets suggests that these miRNAs may have a diverse range of functions that may contribute to tumor recurrence. Taken together, these findings provide evidence that a miRNA expression signature can be developed to aid existing methods to determine the risk of recurrence for women with estrogen receptor positive breast cancers treated with endocrine therapy.


BMC Genomics | 2017

Expression profiling of genes regulated by sphingosine kinase1 signaling in a murine model of hyperoxia induced neonatal bronchopulmonary dysplasia

Viswanathan Natarajan; Alison W. Ha; Yangbasai Dong; Narsa M. Reddy; David L. Ebenezer; Prasad Kanteti; Sekhar P. Reddy; J. Usha Raj; Zhengdeng Lei; Mark Maienschein-Cline; Zarema Arbieva; Anantha Harijith

BackgroundSphingosine- 1-Phosphate (S1P) is a bioactive lipid and an intracellular as well as an extracellular signaling molecule. S1P ligand specifically binds to five related cell surface G-protein-coupled receptors (S1P1-5). S1P levels are tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and catabolism by S1P phosphatases, lipid phosphate phosphatases and S1P lyase. We previously reported that knock down of SphK1 (Sphk1−/−) in a neonatal mouse BPD model conferred significant protection against hyperoxia induced lung injury. To better understand the underlying molecular mechanisms, genome-wide gene expression profiling was performed on mouse lung tissue using Affymetrix MoGene 2.0 array.ResultsTwo-way ANOVA analysis was performed and differentially expressed genes under hyperoxia were identified using Sphk1−/− mice and their wild type (WT) equivalents. Pathway (PW) enrichment analyses identified several signaling pathways that are likely to play a key role in hyperoxia induced lung injury in the neonates. These included signaling pathways that were anticipated such as those involved in lipid signaling, cell cycle regulation, DNA damage/apoptosis, inflammation/immune response, and cell adhesion/extracellular matrix (ECM) remodeling. We noted hyperoxia induced downregulation of the expression of genes related to mitotic spindle formation in the WT which was not observed in Sphk1−/− neonates. Our data clearly suggests a role for SphK1 in neonatal hyperoxic lung injury through elevated inflammation and apoptosis in lung tissue. Further, validation by RT-PCR on 24 differentially expressed genes showed 83% concordance both in terms of fold change and vectorial changes. Our findings are in agreement with previously reported human BPD microarray data and completely support our published in vivo findings. In addition, the data also revealed a significant role for additional unanticipitated signaling pathways involving Wnt and GADD45.ConclusionUsing SphK1 knockout mice and differential gene expression analysis, we have shown here that S1P/SphK1 signaling plays a key role in promoting hyperoxia induced DNA damage, inflammation, apoptosis and ECM remodeling in neonatal lungs. It also appears to suppress pro-survival cellular responses involved in normal lung development. We therefore propose SphK1 as a therapeutic target for the development drugs to combat BPD.


Archive | 2004

Assessing the Potential Effect of Cross-Hybridization on Oligonucleotide Microarrays

Seman Kachalo; Zarema Arbieva; Jie Liang

We introduce a computational method which estimates non-specific binding associated with hybridization signal intensities on the oligonucleotide-based Affymetrix GeneChip arrays. We consider a simplified linear hybridization model that should work well when the target DNA concentration is low or when the probe-target affinity is weak, and use the quadratic programming technique to estimate the parameters of this model (binding coefficients). We show that binding coefficients correlate with the degree of homology between the probe and target sequences. Detectable contribution into DNA binding was found to start from the matches of 7–8 nucleotides. The method suggested here may prove useful for the interpretation of hybridization results and for the assessment of true target concentrations in microarray experiments.

Collaboration


Dive into the Zarema Arbieva's collaboration.

Top Co-Authors

Avatar

Stephen K. Horrigan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Carol A. Westbrook

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Jelena Kravarusic

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Bruce S. Gillis

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Igor M. Gavin

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seby Edassery

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Andrew B. Nesterovitch

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Maniotis

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Bellur S. Prabhakar

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge