Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zdenek Hodny is active.

Publication


Featured researches published by Zdenek Hodny.


Cell Cycle | 2011

Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16ink4a

Martin Kosar; Jirina Bartkova; Sona Hubackova; Zdenek Hodny; Jiri Lukas; Jiri Bartek

Cellular senescence, an irreversible proliferation arrest evoked by stresses such as oncogene activation, telomere dysfunction, or diverse genotoxic insults, has been implicated in tumor suppression and aging. Primary human fibroblasts undergoing oncogene-induced or replicative senescence are known to form senescence-associated heterochromatin foci (SAHF), nuclear DNA domains stained densely by DAPI and enriched for histone modifications including lysine9-trimethylated histone H3. While cellular senescence occurs also in premalignant human lesions, it is unclear how universal is SAHF formation among various cell types, under diverse stresses, and whether SAHF occur in vivo. Here, we report that human primary fibroblasts (BJ and MRC-5) and primary keratinocytes undergoing replicative senescence, or premature senescence induced by oncogenic H-Ras, diverse chemotherapeutics and bacterial cytolethal distending toxin, show differential capacity to form SAHF. Whereas all tested cell types formed SAHF in response to activated H-Ras, only MRC-5, but not BJ fibroblasts or keratinocytes, formed SAHF under senescence induced by etoposide, doxorubicin, hydroxyurea, bacterial intoxication or telomere attrition. In addition, DAPI-defined SAHF were detected on paraffin sections of Ras-transformed cultured fibroblasts, but not human lesions at various stages of tumorigenesis. Overall, our results indicate that unlike the widely present DNA damage response marker γH2AX, SAHF is not a common feature of cellular senescence. Whereas SAHF formation is shared by diverse cultured cell types under oncogenic stress, SAHF are cell-type-restricted under genotoxin-induced and replicative senescence. Furthermore, while the DNA/DAPI-defined SAHF formation in cultured cells parallels enhanced expression of p16ink4a, such ‘prototypic’ SAHF are not observed in tissues, including premalignant lesions, irrespective of enhanced p16ink4a and other features of cellular senescence.


Oncogene | 2010

Cytokine expression and signaling in drug-induced cellular senescence.

Z Novakova; Sona Hubackova; Martin Kosar; L Janderova-Rossmeislova; Jana Dobrovolna; P Vasicova; Marketa Vancurova; Z Horejsi; P Hozak; Jiri Bartek; Zdenek Hodny

Cellular senescence guards against cancer and modulates aging; however, the underlying mechanisms remain poorly understood. Here, we show that genotoxic drugs capable of inducing premature senescence in normal and cancer cells, such as 5-bromo-2′-deoxyuridine (BrdU), distamycin A (DMA), aphidicolin and hydroxyurea, persistently activate Janus kinase–signal transducer and activator of transcription (JAK/STAT) signaling and expression of interferon-stimulated genes (ISGs), such as MX1, OAS, ISG15, STAT1, PML, IRF1 and IRF7, in several human cancer cell lines. JAK1/STAT-activating ligands, interleukin 10 (IL10), IL20, IL24, interferon γ (IFNγ), IFNβ and IL6, were also expressed by senescent cells, supporting autocrine/paracrine activation of JAK1/STAT. Furthermore, cytokine genes, including proinflammatory IL1, tumor necrosis factor and transforming growth factor families, were highly expressed. The strongest inducer of JAK/STAT signaling, cytokine production and senescence was BrdU combined with DMA. RNA interference-mediated knockdown of JAK1 abolished expression of ISGs, but not DNA damage signaling or senescence. Thus, although DNA damage signaling, p53 and RB activation, and the cytokine/chemokine secretory phenotype are apparently shared by all types of senescence, our data reveal so far unprecedented activation of the IFNβ–STAT1–ISGs axis, and indicate a less prominent causative role of IL6-JAK/STAT signaling in genotoxic drug-induced senescence compared with reports on oncogene-induced or replicative senescence. These results highlight shared and unique features of drug-induced cellular senescence, and implicate induction of cancer secretory phenotype in chemotherapy.


Journal of Medicinal Chemistry | 2015

Phosphatidylinositol 3-Kinase (PI3K) and Phosphatidylinositol 3-Kinase-Related Kinase (PIKK) Inhibitors: Importance of the Morpholine Ring

Martin Andrs; Jan Korabecny; Daniel Jun; Zdenek Hodny; Jiri Bartek; Kamil Kuca

Phosphatidylinositol 3-kinases (PI3Ks) and phosphatidylinositol 3-kinase-related protein kinases (PIKKs) are two related families of kinases that play key roles in regulation of cell proliferation, metabolism, migration, survival, and responses to diverse stresses including DNA damage. To design novel efficient strategies for treatment of cancer and other diseases, these kinases have been extensively studied. Despite their different nature, these two kinase families have related origin and share very similar kinase domains. Therefore, chemical inhibitors of these kinases usually carry analogous structural motifs. The most common feature of these inhibitors is a critical hydrogen bond to morpholine oxygen, initially present in the early nonspecific PI3K and PIKK inhibitor 3 (LY294002), which served as a valuable chemical tool for development of many additional PI3K and PIKK inhibitors. While several PI3K pathway inhibitors have recently shown promising clinical responses, inhibitors of the DNA damage-related PIKKs remain thus far largely in preclinical development.


Molecular Oncology | 2015

Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress

Apolinar Maya-Mendoza; Jitka Ostrakova; Martin Kosar; Arnaldur Hall; Pavlina Duskova; Martin Mistrik; Joanna Maria Merchut-Maya; Zdenek Hodny; Jirina Bartkova; Claus Christensen; Jiri Bartek

Both Myc and Ras oncogenes impact cellular metabolism, deregulate redox homeostasis and trigger DNA replication stress (RS) that compromises genomic integrity. However, how are such oncogene‐induced effects evoked and temporally related, to what extent are these kinetic parameters shared by Myc and Ras, and how are these cellular changes linked with oncogene‐induced cellular senescence in different cell context(s) remain poorly understood. Here, we addressed the above‐mentioned open questions by multifaceted comparative analyses of human cellular models with inducible expression of c‐Myc and H‐RasV12 (Ras), two commonly deregulated oncoproteins operating in a functionally connected signaling network. Our study of DNA replication parameters using the DNA fiber approach and time‐course assessment of perturbations in glycolytic flux, oxygen consumption and production of reactive oxygen species (ROS) revealed the following results. First, overabundance of nuclear Myc triggered RS promptly, already after one day of Myc induction, causing slow replication fork progression and fork asymmetry, even before any metabolic changes occurred. In contrast, Ras overexpression initially induced a burst of cell proliferation and increased the speed of replication fork progression. However, after several days of induction Ras caused bioenergetic metabolic changes that correlated with slower DNA replication fork progression and the ensuing cell cycle arrest, gradually leading to senescence. Second, the observed oncogene‐induced RS and metabolic alterations were cell‐type/context dependent, as shown by comparative analyses of normal human BJ fibroblasts versus U2‐OS sarcoma cells. Third, the energy metabolic reprogramming triggered by Ras was more robust compared to impact of Myc. Fourth, the detected oncogene‐induced oxidative stress was due to ROS (superoxide) of non‐mitochondrial origin and mitochondrial OXPHOS was reduced (Crabtree effect). Overall, our study provides novel insights into oncogene‐evoked metabolic reprogramming, replication and oxidative stress, with implications for mechanisms of tumorigenesis and potential targeting of oncogene addiction.


Cell Death & Differentiation | 2012

Nucleoporin NUP153 guards genome integrity by promoting nuclear import of 53BP1.

Moudry P; Claudia Lukas; Macurek L; Beate Neumann; Jean-Karim Hériché; Rainer Pepperkok; Jan Ellenberg; Zdenek Hodny; Jiri Lukas; Jiri Bartek

53BP1 is a mediator of DNA damage response (DDR) and a tumor suppressor whose accumulation on damaged chromatin promotes DNA repair and enhances DDR signaling. Using foci formation of 53BP1 as a readout in two human cell lines, we performed an siRNA-based functional high-content microscopy screen for modulators of cellular response to ionizing radiation (IR). Here, we provide the complete results of this screen as an information resource, and validate and functionally characterize one of the identified ‘hits’: a nuclear pore component NUP153 as a novel factor specifically required for 53BP1 nuclear import. Using a range of cell and molecular biology approaches including live-cell imaging, we show that knockdown of NUP153 prevents 53BP1, but not several other DDR factors, from entering the nuclei in the newly forming daughter cells. This translates into decreased IR-induced 53BP1 focus formation, delayed DNA repair and impaired cell survival after IR. In addition, NUP153 depletion exacerbates DNA damage caused by replication stress. Finally, we show that the C-terminal part of NUP153 is required for effective 53BP1 nuclear import, and that 53BP1 is imported to the nucleus through the NUP153–importin-β interplay. Our data define the structure–function relationships within this emerging 53BP1-NUP153/importin-β pathway and implicate this mechanism in the maintenance of genome integrity.


Journal of Cellular and Molecular Medicine | 2010

Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling.

Hana Blazkova; Katerina Krejcikova; Pavel Moudry; Teresa Frisan; Zdenek Hodny; Jiri Bartek

Cytolethal distending toxins (CDTs) are proteins produced and secreted by facultative pathogenic strains of Gram‐negative bacteria with potentially genotoxic effects. Mammalian cells exposed to CDTs undergo cell type‐dependent cell‐cycle arrest or apoptosis; however, the cell fate responses to such intoxication are mechanistically incompletely understood. Here we show that both normal and cancer cells (BJ, IMR‐90 and WI‐38 fibroblasts, HeLa and U2‐OS cell lines) that survive the acute phase of intoxication by Haemophilus ducreyi CDT possess the hallmarks of cellular senescence. This characteristic phenotype included persistently activated DNA damage signalling (detected as 53BP1/γH2AX+ foci), enhanced senescence‐associated β‐galactosidase activity, expansion of promyelocytic leukaemia nuclear compartments and induced expression of several cytokines (especially interleukins IL‐6, IL‐8 and IL‐24), overall features shared by cells undergoing replicative or premature cellular senescence. We conclude that analogous to oncogenic, oxidative and replicative stresses, bacterial intoxication represents another pathophysiological stimulus that induces premature senescence, an intrinsic cellular response that may mechanistically underlie the ‘distended’ morphology evoked by CDTs. Finally, the activation of the two anticancer barriers, apoptosis and cellular senescence, together with evidence of chromosomal aberrations (micronucleation) reported here, support the emerging genotoxic and potentially oncogenic effects of this group of bacterial toxins, and warrant further investigation of their role(s) in human disease.


Cell Cycle | 2012

Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage

Pavel Moudry; Claudia Lukas; Libor Macurek; Hana Hanzlikova; Zdenek Hodny; Jiri Lukas; Jiri Bartek

The cellular DNA damage response (DDR) machinery that maintains genomic integrity and prevents severe pathologies, including cancer, is orchestrated by signaling through protein modifications. Protein ubiquitylation regulates repair of DNA double-strand breaks (DSBs), toxic lesions caused by various metabolic as well as environmental insults such as ionizing radiation (IR). Whereas several components of the DSB-evoked ubiquitylation cascade have been identified, including RNF168 and BRCA1 ubiquitin ligases, whose genetic defects predispose to a syndrome mimicking ataxia-telangiectasia and cancer, respectively, the identity of the apical E1 enzyme involved in DDR has not been established. Here, we identify ubiquitin-activating enzyme UBA1 as the E1 enzyme required for responses to IR and replication stress in human cells. We show that siRNA-mediated knockdown of UBA1, but not of another UBA family member UBA6, impaired formation of both ubiquitin conjugates at the sites of DNA damage and IR-induced foci (IRIF) by the downstream components of the DSB response pathway, 53BP1 and BRCA1. Furthermore, chemical inhibition of UBA1 prevented IRIF formation and severely impaired DSB repair and formation of 53BP1 bodies in G1, a marker of response to replication stress. In contrast, the upstream steps of DSB response, such as phosphorylation of histone H2AX and recruitment of MDC1, remained unaffected by UBA1 depletion. Overall, our data establish UBA1 as the apical enzyme critical for ubiquitylation-dependent signaling of both DSBs and replication stress in human cells, with implications for maintenance of genomic integrity, disease pathogenesis and cancer treatment.


Nature Cell Biology | 2008

Cytokine loops driving senescence.

Jiri Bartek; Zdenek Hodny; Jiri Lukas

Cellular senescence, the permanent state of cell-cycle arrest, is emerging as an intrinsic barrier against tumorigenesis and a mechanism contributing to organismal ageing. Unexpected findings now identify multiple secreted inflammatory cytokines, their cognate receptors and positive-feedback loops with corresponding transcription factors, as key mediators of both oncogene-induced and replicative senescence.


Oncogene | 2016

IFNγ induces oxidative stress, DNA damage and tumor cell senescence via TGFβ/SMAD signaling-dependent induction of Nox4 and suppression of ANT2

Sona Hubackova; A Kucerova; G Michlits; L Kyjacova; M Reinis; O Korolov; Jiri Bartek; Zdenek Hodny

Cellular senescence provides a biological barrier against tumor progression, often associated with oncogene-induced replication and/or oxidative stress, cytokine production and DNA damage response (DDR), leading to persistent cell-cycle arrest. While cytokines such as tumor necrosis factor-alpha (TNFα) and interferon gamma (IFNγ) are important components of senescence-associated secretome and induce senescence in, for example, mouse pancreatic β-cancer cell model, their downstream signaling pathway(s) and links with oxidative stress and DDR are mechanistically unclear. Using human and mouse normal and cancer cell models, we now show that TNFα and IFNγ induce NADPH oxidases Nox4 and Nox1, reactive oxygen species (ROS), DDR signaling and premature senescence. Unlike mouse tumor cells that required concomitant presence of IFNγ and TNFα, short exposure to IFNγ alone was sufficient to induce Nox4, Nox1 and DDR in human cells. siRNA-mediated knockdown of Nox4 but not Nox1 decreased IFNγ-induced DDR. The expression of Nox4/Nox1 required Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling and the effect was mediated by downstream activation of transforming growth factor-beta (TGFβ) secretion and consequent autocrine/paracrine activation of the TGFβ/Smad pathway. Furthermore, the expression of adenine nucleotide translocase 2 (ANT2) was suppressed by IFNγ contributing to elevation of ROS and DNA damage. In contrast to mouse B16 cells, inability of TC-1 cells to respond to IFNγ/TNFα by DDR and senescence correlated with the lack of TGFβ and Nox4 response, supporting the role of ROS induced by NADPH oxidases in cytokine-induced senescence. Overall, our data reveal differences between cytokine effects in mouse and human cells, and mechanistically implicate the TGFβ/SMAD pathway, via induction of NADPH oxidases and suppression of ANT2, as key mediators of IFNγ/TNFα-evoked genotoxicity and cellular senescence.


Journal of Biological Chemistry | 2012

Interleukin 6 signaling regulates promyelocytic leukemia protein gene expression in human normal and cancer cells.

Sona Hubackova; Katerina Krejcikova; Jiri Bartek; Zdenek Hodny

Background: PML is a tumor suppressor involved in response to viral and genotoxic stress. Results: Depletion of IL6 siRNA-mediated knockdown of STAT3 or NEMO suppresses PML gene expression. Conclusion: PML is regulated via IL-6-dependent JAK-STAT3 and PI3K-NFκB signaling pathways in an autocrine/paracrine manner. Significance: Paracrine regulation of PML gene expression is a part of tissue adaptation to local stress. Tumor suppressor PML is induced under viral and genotoxic stresses by interferons and JAK-STAT signaling. However, the mechanism responsible for its cell type-specific regulation under non-stimulated conditions is poorly understood. To analyze the variation of PML expression, we utilized three human cell types, BJ fibroblasts and HeLa and U2OS cell lines, each with a distinct PML expression pattern. Analysis of JAK-STAT signaling in the three cell lines revealed differences in levels of activated STAT3 but not STAT1 correlating with PML mRNA and protein levels. RNAi-mediated knockdown of STAT3 decreased PML expression; both STAT3 level/activity and PML expression relied on IL6 secreted into culture media. We mapped the IL6-responsive sequence to an ISRE(−595/−628) element of the PML promoter. The PI3K/Akt/NFκB branch of IL6 signaling showed also cell-type dependence, being highest in BJ, intermediate in HeLa, and lowest in U2OS cells and correlated with IL6 secretion. RNAi-mediated knockdown of NEMO (NF-κ-B essential modulator), a key component of NFκB activation, suppressed NFκB targets LMP2 and IRF1 together with STAT3 and PML. Combined knockdown of STAT3 and NEMO did not further promote PML suppression, and it can be bypassed by exogenous IL6, indicating the NF-κB pathway acts upstream of JAK-STAT3 through induction of IL6. Our results indicate that the cell type-specific activity of IL6 signaling pathways governs PML expression under unperturbed growth conditions. As IL6 is induced in response to various viral and genotoxic stresses, this cytokine may regulate autocrine/paracrine induction of PML under these pathophysiological states as part of tissue adaptation to local stress.

Collaboration


Dive into the Zdenek Hodny's collaboration.

Top Co-Authors

Avatar

Sona Hubackova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamil Kuca

University of Hradec Králové

View shared research outputs
Top Co-Authors

Avatar

Marketa Vancurova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Milan Reiniš

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Ladislav Andera

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Martin Kosar

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Hana Hanzlikova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiri Lukas

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge