Zdeněk Petrášek
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zdeněk Petrášek.
Nature | 2009
Shuizi Rachel Yu; Markus Burkhardt; Matthias Nowak; Jonas Ries; Zdeněk Petrášek; Steffen Scholpp; Petra Schwille; Michael Brand
It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.
Nature Materials | 2013
Jung Ho Yu; Seung-Hae Kwon; Zdeněk Petrášek; Ok Kyu Park; Samuel Woojoo Jun; Kwangsoo Shin; Moonkee Choi; Yong Il Park; Kyeongsoon Park; Hyon Bin Na; Nohyun Lee; Dong Won Lee; Jeong Hyun Kim; Petra Schwille; Taeghwan Hyeon
Three-photon excitation is a process that occurs when three photons are simultaneously absorbed within a luminophore for photo-excitation through virtual states. Although the imaging application of this process was proposed decades ago, three-photon biomedical imaging has not been realized yet owing to its intrinsic low quantum efficiency. We herein report on high-resolution in vitro and in vivo imaging by combining three-photon excitation of ZnS nanocrystals and visible emission from Mn(2+) dopants. The large three-photon cross-section of the nanocrystals enabled targeted cellular imaging under high spatial resolution, approaching the theoretical limit of three-photon excitation. Owing to the enhanced Stokes shift achieved through nanocrystal doping, the three-photon process was successfully applied to high-resolution in vivo tumour-targeted imaging. Furthermore, the biocompatibility of ZnS nanocrystals offers great potential for clinical applications of three-photon imaging.
Scientific Reports | 2013
Hermann Ehrlich; J. Keith Rigby; J. P. Botting; Mikhail V. Tsurkan; Carsten Werner; Petra Schwille; Zdeněk Petrášek; Andrzej Pisera; Paul Simon; Victor N. Sivkov; D. V. Vyalikh; S. L. Molodtsov; Denis V. Kurek; Martin Kammer; S. Hunoldt; Richard T. Born; D. Stawski; Axel Steinhof; Vasily V. Bazhenov; T. Geisler
Sponges are probably the earliest branching animals, and their fossil record dates back to the Precambrian. Identifying their skeletal structure and composition is thus a crucial step in improving our understanding of the early evolution of metazoans. Here, we present the discovery of 505–million-year-old chitin, found in exceptionally well preserved Vauxia gracilenta sponges from the Middle Cambrian Burgess Shale. Our new findings indicate that, given the right fossilization conditions, chitin is stable for much longer than previously suspected. The preservation of chitin in these fossils opens new avenues for research into other ancient fossil groups.
Applied Physics Letters | 2003
Valentina Emiliani; Daniele Sanvitto; Marc Tramier; T. Piolot; Zdeněk Petrášek; Klaus Kemnitz; Christiane Durieux; Maïté Coppey-Moisan
The use of a time- and space-correlated single-photon counting detector enables us to perform fluorescence lifetime imaging microscopy in living cells with a temporal resolution of less than 100 ps and a spatial resolution of 500 nm. Two-dimensional (2D) maps of the fluorescence lifetimes and the corresponding prefactors are extracted by the use of a fitting program based on the Levenberg–Marquardt algorithm (Globals Unlimited). We applied this technique to extract 2D maps of protein localization in multilabeled living cells and to study protein–protein interaction by fluorescence resonance energy transfer.
Biophysical Journal | 2008
Zdeněk Petrášek; Carsten Hoege; Alireza Mashaghi; Thomas Ohrt; Anthony A. Hyman; Petra Schwille
The development and differentiation of complex organisms from the single fertilized egg is regulated by a variety of processes that all rely on the distribution and interaction of proteins. Despite the tight regulation of these processes with respect to temporal and spatial protein localization, exact quantification of the underlying parameters, such as concentrations and distribution coefficients, has so far been problematic. Recent experiments suggest that fluorescence correlation spectroscopy on a single molecule level in living cells has great promise in revealing these parameters with high precision. The optically challenging situation in multicellular systems such as embryos can be ameliorated by two-photon excitation, where scattering background and cumulative photobleaching is limited. A more severe problem is posed by the large range of molecular mobilities observed at the same time, as standard FCS relies strongly on the presence of mobility-induced fluctuations. In this study, we overcame the limitations of standard FCS. We analyzed in vivo polarity protein PAR-2 from eggs of Caenorhabditis elegans by beam-scanning FCS in the cytosol and on the cortex of C. elegans before asymmetric cell division. The surprising result is that the distribution of PAR-2 is largely uncoupled from the movement of cytoskeletal components of the cortex. These results call for a more systematic future investigation of the different cortical elements, and show that the FCS technique can contribute to answering these questions, by providing a complementary approach that can reveal insights not obtainable by other techniques.
Biophysical Journal | 2012
Jörg Mütze; Vijay Iyer; John J. Macklin; Jennifer Colonell; Bill Karsh; Zdeněk Petrášek; Petra Schwille; Loren L. Looger; Luke D. Lavis; Tim Harris
Two-photon probe excitation data are commonly presented as absorption cross section or molecular brightness (the detected fluorescence rate per molecule). We report two-photon molecular brightness spectra for a diverse set of organic and genetically encoded probes with an automated spectroscopic system based on fluorescence correlation spectroscopy. The two-photon action cross section can be extracted from molecular brightness measurements at low excitation intensities, while peak molecular brightness (the maximum molecular brightness with increasing excitation intensity) is measured at higher intensities at which probe photophysical effects become significant. The spectral shape of these two parameters was similar across all dye families tested. Peak molecular brightness spectra, which can be obtained rapidly and with reduced experimental complexity, can thus serve as a first-order approximation to cross-section spectra in determining optimal wavelengths for two-photon excitation, while providing additional information pertaining to probe photostability. The data shown should assist in probe choice and experimental design for multiphoton microscopy studies. Further, we show that, by the addition of a passive pulse splitter, nonlinear bleaching can be reduced--resulting in an enhancement of the fluorescence signal in fluorescence correlation spectroscopy by a factor of two. This increase in fluorescence signal, together with the observed resemblance of action cross section and peak brightness spectra, suggests higher-order photobleaching pathways for two-photon excitation.
Photochemical and Photobiological Sciences | 2005
Zdeněk Petrášek; Franz-Josef Schmitt; Christoph Theiss; Joachim Huyer; Min Chen; Anthony W. D. Larkum; Hans Joachim Eichler; Klaus Kemnitz; Hann-Jörg Eckert
The fluorescence decay spectra and the excitation energy transfer from the phycobiliproteins (PBP) to the chlorophyll-antennae of intact cells of the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina were investigated at 298 and 77 K by time- and wavelength-correlated single photon counting fluorescence spectroscopy. At 298 K it was found that (i) the fluorescence dynamics in A. marina is characterized by two emission peaks located at about 650 and 725 nm, (ii) the intensity of the 650 nm fluorescence depends strongly on the excitation wavelength, being high upon excitation of phycobiliprotein (PBP) at 632 nm but virtually absent upon excitation of chlorophyll at 430 nm, (iii) the 650 nm fluorescence band decayed predominantly with a lifetime of 70 +/- 20 ps, (iv) the 725 nm fluorescence, which was observed independent of the excitation wavelength, can be described by a three-exponential decay kinetics with lifetimes depending on the open or the closed state (F(0) or F(m)) of the reaction centre of Photosystem II (PS II). Based on the results of this study, it is inferred that the excitation energy transfer from phycobiliproteins to Chl d of PS II in A. marina occurs with a time constant of about 70 ps, which is about three times faster than the energy transfer from the phycobilisomes to PS II in the Chl a-containing cyanobacterium Synechococcus 6301. A similar fast PBP to Chl d excitation energy transfer was also observed at 77 K. At 77 K a small long-lived fluorescence decay component with a lifetime of 14 ns was observed in the 640-700 nm spectral range. However, it has a rather featureless spectrum, not typical for Chl a, and was only observed upon excitation at 400 nm but not upon excitation at 632 and 654 nm. Thus, this long-lived fluorescence component cannot be used as an indicator that the primary PS II donor of Acaryochloris marina contains Chl a.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Senthil Arumugam; Zdeněk Petrášek; Petra Schwille
Significance Although the mechanisms of microtubule depolymerization are relatively well understood, those of the tubulin homologue FtsZ have been difficult to understand owing to differences in its filament architecture and dynamics compared with those of microtubules. MinC, an important negative regulator of FtsZ and a component of the Min oscillatory system in Escherichia coli, positions the Z-ring to the midcell. With single-molecule fluorescence imaging in a cell-free minimal system on supported lipid bilayers, in which a network of FtsZ bundles assemble in a chemically well-defined system, the dynamic nature of the FtsZ bundles and the mechanism of disassembly by MinC is elucidated. In Escherichia coli, a contractile ring (Z-ring) is formed at midcell before cytokinesis. This ring consists primarily of FtsZ, a tubulin-like GTPase, that assembles into protofilaments similar to those in microtubules but different in their suprastructures. The Min proteins MinC, MinD, and MinE are determinants of Z-ring positioning in E. coli. MinD and MinE oscillate from pole to pole, and genetic and biochemical evidence concludes that MinC positions the Z-ring by coupling its assembly to the oscillations by direct inhibitory interaction. The mechanism of inhibition of FtsZ polymerization and, thus, positioning by MinC, however, is not understood completely. Our in vitro reconstitution experiments suggest that the Z-ring consists of dynamic protofilament bundles in which monomers constantly are exchanged throughout, stochastically creating protofilament ends along the length of the filament. From the coreconstitution of FtsZ with MinCDE, we propose that MinC acts on the filaments in two ways: by increasing the detachment rate of FtsZ-GDP within the filaments and by reducing the attachment rate of FtsZ monomers to filaments by occupying binding sites on the FtsZ filament lattice. Furthermore, our data show that the MinCDE system indeed is sufficient to cause spatial regulation of FtsZ, required for Z-ring positioning.
New Journal of Physics | 2010
Jonas Ries; Zdeněk Petrášek; Anna J García-Sáez; Petra Schwille
Dual-colour fluorescence cross-correlation spectroscopy is a powerful method of studying binding between labelled biomolecules in vitro as well as in vivo. However, numerous artefacts and experimental complexities complicate quantitative measurements. Here, we show that a combination of dual-colour fluorescence correlation spectroscopy (FCS) with dual-focus FCS avoids artefacts due to chromatic aberrations or saturation and circumvents the calibration of the detection volumes. In addition, we present a comprehensive mathematical framework that allows us to accurately analyse correlation curves even in the presence of spectral cross-talk, incomplete or stochastic labelling, multiple binding sites, a fluorescent background and depletion due to photobleaching. We demonstrate the merits of this approach using dual-colour dual-focus scanning FCS, which allows binding measurements on membranes not affected by membrane movements.
Methods in Enzymology | 2010
Zdeněk Petrášek; Jonas Ries; Petra Schwille
Scanning fluorescence correlation spectroscopy (sFCS) is the generic term for a group of fluorescence correlation techniques where the measurement volume is moved across the sample in a defined way. The introduction of scanning is motivated by its ability to alleviate or remove several distinct problems often encountered in standard FCS, and thus, to extend the range of applicability of fluorescence correlation methods in biological systems. These problems include poor statistical accuracy in measurements with slowly moving molecules, photobleaching, optical distortions affecting the calibration of the measurement volume, membrane instabilities, etc. Here, we present an overview of sFCS methods, explaining their benefits, implementation details, requirements, and limitations, as well as relations to each other. Further, we give examples of different sFCS implementations as applied to cellular systems, namely large-circle sFCS to measure protein dynamics in embryo cortex and line sFCS to measure protein diffusion and interactions in unstable membranes.