Zdenka Fohlerova
Central European Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zdenka Fohlerova.
International Journal of Pharmaceutics | 2016
A.M. Abdel-Mohsen; J. Jancar; D. Massoud; Zdenka Fohlerova; H. Elhadidy; Zdeněk Spotz; A. Hebeish
Chitin/chitosan-glucan complex (ChCsGC) was isolated from Schizophyllum commune (S. commune) and dissolved for the first time in precooled (-15°C) 8wt.% urea/6wt.% NaOH aqueous solution. Novel nonwoven microfiber mats were fabricated by wet-dry-spinning technique and evaluated the mechanical of fabrics mats and surface morphology. Isolated and nonwoven mat were characterized employing FTIR-ATR, Optical microscope, TGA, DSC, H/C NMR, SEM and XRD techniques. According to the physical/chemical characterization measurements we can assumed that, the net and the novel dressing mats have the same chemical structure with slightly changes in the thermal stability for the dressing mats.The biological activity of the nonwoven ChCsGC fabric was tested against different types of bacteria exhibiting excellent antibacterial activity. Cell viability of the plain complex and nonwovens mats were evaluated utilizing mouse fibroblast cell line varying concentrations and treatment time. ChCsGC did not show any cytotoxicity against mouse fibroblast cells and the cell-fabrics interaction was also investigated using fluorescence microscope. The novel ChCsGC nonwovens exhibited excellent surgical wound healing ability when tested using rat models.
International Journal of Biological Macromolecules | 2016
Rasha M. Abdel-Rahman; A.M. Abdel-Mohsen; Radim Hrdina; Ladislav Burgert; Zdenka Fohlerova; David Pavliňák; O.N. Sayed; J. Jancar
Thin layers of chitosan (positively charged)/sodium hyaluronate (negatively charged)/nonwoven fabrics were constructed by polyelectrolyte multilayer pad-dry-cure technique. Pure chitosan (CS) was isolated from shrimp shell and immobilized onto nonwoven fabrics (NWFs) using citric acid (CTA) as cross linker and solvent agents through a pad-dry-cure method. The prepared thin layer of chitosan citrate/nonwoven fabrics (CSCTA/NWFs) were consequently impregnated with hyaluronan (CSCTA/HA/NWFs) in the second path through a pad-dry-cure method. Chitosan/hyaluronan/nonwoven fabrics wound dressing was characterized by different techniques such as FTIR-ATR, TGA and SEM. The antibacterial activity and the cytotoxicity of the dressing sheets were evaluated against Escherichia coli (E. coli) and Streptococcus aureus (S. aureus), mouse fibroblast (NIH-3T3) and keratinocytes (HaCaT) cell lines, respectively. The cell-fabrics interaction was also investigated using fluorescence microscope, based on live/dead staining assay of 3T3 cells. The healing properties of the new wound dressing were evaluated and compared with the control sample.
Food Chemistry | 2016
Jiri Zeravik; Zdenka Fohlerova; Miodrag Milovanovic; Ondrej Kubesa; Marta Zeisbergerová; Karel Lacina; Aleksandar Petrović; Zdenek Glatz; Petr Skládal
Biosensors based on lactate oxidase, sarcosine oxidase and mixture of fumarase and sarcosine oxidase were used for monitoring of organic acids in wine samples. Additionally, tartaric acid was determined by modified colorimetric method based on formation of the vanadate-tartrate complex. The above mentioned methods were used for the analysis of 31 wine samples and obtained data were compared with the results from capillary electrophoresis as a basic standard method. This comparison showed a certain degree of correlation between biosensors and capillary electrophoresis. The provided information pointed to the potential uses of biosensors in the field of winemaking.
Photochemistry and Photobiology | 2015
Amitava Moulick; Iva Blazkova; Vedran Milosavljevic; Zdenka Fohlerova; Pavel Kopel; Marketa Vaculovicova; Vojtech Adam; Rene Kizek
The present work is aimed to synthesize CdTe/ZnSe core/shell quantum dots (QDs) in an easy way and to explore the possibilities of its application in in vitro imaging of chicken tissue and embryo. The QDs were prepared using microwave irradiation with different temperatures, which is a very easy and less time‐consuming method. Subsequently, these QDs were characterized by spectrofluorimetry, Transmission Electron Microscopy, X‐ray fluorescence analysis and Dynamic Light Scattering measurement. A blueshifting of the emission was found when ZnSe was deposited on CdTe QDs. The QDs showed its fluorescence emission quantum yields up to 25%. They were applied into chicken embryos and breast muscle tissues to study their efficiency in in vitro imaging. All the QDs of different color were able to visualize in in vitro imaging. The highest fluorescence intensity was detected in the case of red QDs prepared at 100°C. The green and red QDs were possible to detect up to the depth of 3 and 4 mm of the tissue, respectively.
Chemical Papers | 2015
Zbynek Heger; Ondrej Zitka; Zdenka Fohlerova; Rene Kizek; Vojtech Adam
Due to the considerable stability of green fluorescent proteins and their capacity to be readily permutated or mutated, they may be exploited in multiple ways to enhance the functionality of in vitro biosensors. Many possibilities, such as the formation of chimeras with other proteins or antibodies, as well as Förster resonance emission transfer performance, may be used for the highly sensitive and specific detection of the target molecules. This review considers the great potential of green fluorescent proteins as the fluorescent probing or recognition biomolecule in various in vitro biosensors applications, as well as obstacles associated with their use.
Archive | 2019
Ondrej Svoboda; Josef Skopalik; Larisa Baiazitova; Vratislav Cmiel; Tomas Potocnak; Ivo Provaznik; Zdenka Fohlerova
Gene delivery is a widespread strategy in current experimental medicine. In this work, we report a method for low-toxic intracellular DNA vector delivery and post transfection localisation of this vector in mouse embryonic fibroblast cell lines. The surface of modified ferumoxide nanoparticles conjugated with Rhoda-mine B isothiocyanate (FeNV-Rh) was modified with linear polyethyleneimine and medium molecular weight chitosan to increase Accelerated Sensor of Action Potentials DNA vector adhesion. The size of the FeNV-Rh/DNA transfection complex was studied using dynamic light scattering (DLS) and scanning electron microscopy (SEM) techniques. The transfection complex internalisation of plasmid expression and FeNV-Rh, and stability of rhodamine fluorescence in intracellular space were observed at time periods 6, 12, 24 and 48 h post transfection. Results showed high transfection complex intracellular biocompatibility—cell viability after Rh-MNP labelling was higher than 97% 24 h after transfection, and higher than 95% after the next 24 h. Selective FeNV-Rh localisation in the lysosomes was quantified. More than 82% of nanoparticles were localised in the lysosomes 12 h post transfection and 94% of lysosomes had a significant and long-term deposit of nanoparticles. DNA vector expression was visible in >65% of the cells and precise protein localisation on the cell membrane was confirmed using confocal microscopy.
Journal of Biomedical Nanotechnology | 2018
Ondrej Svoboda; Zdenka Fohlerova; Larisa Baiazitova; Petr Mlynek; Konstantin Samouylov; Ivo Provaznik
A non-viral tool for the delivery of nucleic acids termed magnetofection was recently developed as a promising transgenic technique with high transfection efficiency for gene delivery into mammalian cells. Despite the fact that transfection efficiency was the objective in the past, the post-transfection cell morphology and the essential gigaseal formation between cells and patch clamp glass electrodes have not been studied in detail. The cell viability and fluorescent response of Accelerated Sensor of Action Potentials (ASAP1) were studied in somatic HEK293 cells with respect to preserving physiological cell behavior and morphology. The DNA vector (pcDNA3.1/Puro-CAG-ASAP1) was intracellularly delivered by DNA/polyethyleneimine/magnetic nanoparticles and the transfection protocols varied in complex formations were optimized with respect to transfection rate, cytotoxicity of modified nanoparticles and essential gigaseal formation needed for patch clamp technique. A patch clamp study of transfected cells was carried out 72 hours post-transfection. Our results showed the best complex formation in order DNA/magnetic nanoparticle/polyethyleneimine that provides 51.82% transfection efficiency, 83.45% of patch clamp applicable cells, and 90.15% of gigasealed patch clamp applicable cells. A significant difference in fluorescent response of transfected cells was not found compared to control. Thus, these observations suggested that a large amount of the cells were able to create a gigaseal with a glass electrode 72 hours from transfection despite the lower transfection efficiencies.
Acta Biomaterialia | 2018
Edgar B. Montufar; Mariano Casas-Luna; Miroslava Horynová; Serhii Tkachenko; Zdenka Fohlerova; Sebastián Diaz-de-la-Torre; Karel Dvořák; Ladislav Čelko; Jozef Kaiser
In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. STATEMENT OF SIGNIFICANCE Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in young patients. In this work, α-TCP/Fe composites are studied for the first time in a wide range of compositions, showing not only higher degradation rate in vitro than pure components, but also good cytocompatibility and mechanical properties controllable with the Fe content. Ceramic matrix composites show high specific strength and low elastic modulus, thus better fulfilling the requirements for bone fractures fixation. A significant advance over previous works on the topic is the use of pulsed electric current assisted sintering together with α-TCP, convenient to improve the mechanical performance and degradation rate, respectively.
computing in cardiology conference | 2015
Larisa Baiazitova; Josef Skopalik; Vratislav Cmiel; Jiri Chmelik; Ondrej Svoboda; Zdenka Fohlerova; Ivo Provaznik
Mesenchymal stromal cells (MSC) and neutrophils (NP) migration are important factors of the postinfarcted hearts remodeling. These both types of the cells can migrate through cardiac extracellular matrix to the central ischemic region. The quantitative description of MSC and NP migration through collagen matrix is important aim of modern bio-medicine. NP and MSC migration through peri-infarct zone was simulated in a custom-made microphantom: two chambers (bottom 10×20 mm) connected by a collagen tunnel. Bottom of the system was constructed from glass plate, compatible with confocal microscopy. System was heated at 37°C in 5-21 % O2 environment. The first chamber was starting point of migrating MSC and NP. The second chamber included living or apoptotic myocytes (model of central infarcted). Monitoring of migrating cells was performed on the confocal laser scanning microscope Leica. Chemotaxis movement of MSC through collagen tunnel between two chambers was approved. Speed was significantly modulated by collagen fiber orientation and hypoxic condition. The speed constants of cell motility were quantified by originally-made microphantom Matlab utility and basic equations for cell motility was proposed, usable for future creating of in-silico simulator of real cell invasivity in patients.
Express Polymer Letters | 2016
V. Kupka; Lucy Vojtová; Zdenka Fohlerova; J. Jancar