Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zeeba D. Kabir is active.

Publication


Featured researches published by Zeeba D. Kabir.


Progress in Brain Research | 2014

Effects of prenatal exposure to cocaine on brain structure and function.

Deirdre M. McCarthy; Zeeba D. Kabir; Pradeep G. Bhide; Barry E. Kosofsky

Drug abuse during pregnancy affects the mother and has adverse effects on the unborn child. This chapter highlights our recent findings at the neuroanatomical, molecular, and behavioral levels in a prenatal cocaine exposure mouse model. In the embryonic brains of prenatally cocaine-exposed mice, we observed a delay in the tangential migration of GABA neurons to the cerebral cortex as a result of a significant but transient decrease in the expression of the neurotrophin brain-derived neurotrophic factor (BDNF). These developmental changes lead to lasting deficits in the numerical density of GABA neurons in the mature medial prefrontal cortex (mPFC). In adult prenatally cocaine-exposed mice, we observed a behavioral deficit in the recall of an extinguished cue-conditioned fear, which was rescued by administration of exogenous recombinant BDNF protein directly into the infralimbic cortex of the mPFC, which may result from altered activity-driven transcriptional regulation of BDNF.


eNeuro | 2016

The Neuropsychiatric Disease-Associated Gene cacna1c Mediates Survival of Young Hippocampal Neurons.

Anni S. Lee; Héctor De Jesús-Cortés; Zeeba D. Kabir; Whitney Knobbe; Madeline Orr; Caitlin E. Burgdorf; Paula Huntington; Latisha McDaniel; Jeremiah K. Britt; Franz Hoffmann; Daniel J. Brat; Anjali M. Rajadhyaksha; Andrew A. Pieper

Visual Overview Genetic variations in CACNA1C, which encodes the Cav1.2 subunit of L-type calcium channels (LTCCs), are associated with multiple forms of neuropsychiatric disease that manifest high anxiety in patients. Genetic variations in CACNA1C, which encodes the Cav1.2 subunit of L-type calcium channels (LTCCs), are associated with multiple forms of neuropsychiatric disease that manifest high anxiety in patients. In parallel, mice harboring forebrain-specific conditional knockout of cacna1c (forebrain-Cav1.2 cKO) display unusually high anxiety-like behavior. LTCCs in general, including the Cav1.3 subunit, have been shown to mediate differentiation of neural precursor cells (NPCs). However, it has not previously been determined whether Cav1.2 affects postnatal hippocampal neurogenesis in vivo. Here, we show that forebrain-Cav1.2 cKO mice exhibit enhanced cell death of young hippocampal neurons, with no change in NPC proliferation, hippocampal size, dentate gyrus thickness, or corticosterone levels compared with wild-type littermates. These mice also exhibit deficits in brain levels of brain-derived neurotrophic factor (BDNF), and Cre recombinase-mediated knockdown of adult hippocampal Cav1.2 recapitulates the deficit in young hippocampal neurons survival. Treatment of forebrain-Cav1.2 cKO mice with the neuroprotective agent P7C3-A20 restored the net magnitude of postnatal hippocampal neurogenesis to wild-type levels without ameliorating their deficit in BDNF expression. The role of Cav1.2 in young hippocampal neurons survival may provide new approaches for understanding and treating neuropsychiatric disease associated with aberrations in CACNA1C. Visual Abstract


The Journal of Physiology | 2016

L‐type Ca2+ channels in mood, cognition and addiction: integrating human and rodent studies with a focus on behavioural endophenotypes

Zeeba D. Kabir; Anni S. Lee; Anjali M. Rajadhyaksha

Brain Cav1.2 and Cav1.3 L‐type Ca2+ channels play key physiological roles in various neuronal processes that contribute to brain function. Genetic studies have recently identified CACNA1C as a candidate risk gene for bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder (MDD) and autism spectrum disorder (ASD), and CACNA1D for BD and ASD, suggesting a contribution of Cav1.2 and Cav1.3 Ca2+ signalling to the pathophysiology of neuropsychiatric disorders. Once considered sole clinical entities, it is now clear that BD, SCZ, MDD and ASD share common phenotypic features, most likely due to overlapping neurocircuitry and common molecular mechanisms. A major future challenge lies in translating the human genetic findings to pathological mechanisms that are translatable back to the patient. One approach for tackling such a daunting scientific endeavour for complex behaviour‐based neuropsychiatric disorders is to examine intermediate biological phenotypes in the context of endophenotypes within distinct behavioural domains. This will better allow us to integrate findings from genes to behaviour across species, and improve the chances of translating preclinical findings to clinical practice.


PLOS ONE | 2013

Molecular Mechanisms Mediating a Deficit in Recall of Fear Extinction in Adult Mice Exposed to Cocaine In Utero

Zeeba D. Kabir; Aaron Katzman; Barry E. Kosofsky

Prenatal cocaine exposure has been shown to alter cognitive processes of exposed individuals, presumed to be a result of long-lasting molecular alterations in the brain. In adult prenatal cocaine exposed (PCOC) mice we have identified a deficit in recall of fear extinction, a behavior that is dependent on the medial prefrontal cortex (mPFC) and the hippocampus. While we observed no change in the constitutive expression of brain derived neurotrophic factor (BDNF) protein and mRNA in the mPFC and hippocampus of adult PCOC mice, we observed blunted BDNF signaling in the mPFC of adult PCOC mice after fear extinction compared to the control animals. Specifically, during the consolidation phase of the extinction memory, we observed a decrease in BDNF protein and it’s phospho-TrkB receptor expression. Interestingly, at this same time point there was a significant increase in total Bdnf mRNA levels in the mPFC of PCOC mice as compared with controls. In the Bdnf gene, we identified decreased constitutive binding of the transcription factors, MeCP2 and P-CREB at the promoters of Bdnf exons I and IV in the mPFC of PCOC mice, that unlike control mice remained unchanged when measured during the behavior. Finally, bilateral infusion of recombinant BDNF protein into the infralimbic subdivision of the mPFC during the consolidation phase of the extinction memory rescued the behavioral deficit in PCOC mice. In conclusion, these findings extend our knowledge of the neurobiologic impact of prenatal cocaine exposure on the mPFC of mice, which may lead to improved clinical recognition and treatment of exposed individuals.


Frontiers in Psychiatry | 2011

Enhanced Dopamine D1 and BDNF Signaling in the Adult Dorsal Striatum but not Nucleus Accumbens of Prenatal Cocaine Treated Mice

Thomas F. Tropea; Zeeba D. Kabir; Gagandeep Kaur; Anjali M. Rajadhyaksha; Barry E. Kosofsky

Previous work from our group and others utilizing animal models have demonstrated long-lasting structural and functional alterations in the meso-cortico-striatal dopamine pathway following prenatal cocaine (PCOC) treatment. We have shown that PCOC treatment results in augmented D1-induced cyclic AMP (cAMP) and cocaine-induced immediate-early gene expression in the striatum of adult mice. In this study we further examined basal as well as cocaine or D1-induced activation of a set of molecules known to be mediators of neuronal plasticity following psychostimulant treatment, with emphasis in the dorsal striatum (Str) and nucleus accumbens (NAc) of adult mice exposed to cocaine in utero. Basally, in the Str of PCOC treated mice there were significantly higher levels of (1) CREB and Ser133 P-CREB (2) Thr34 P-DARPP-32 and (3) GluA1 and Ser 845 P-GluA1 when compared to prenatal saline (PSAL) treated mice. In the NAc there were significantly higher basal levels of (1) CREB and Ser133 P-CREB, (2) Thr202/Tyr204 P-ERK2, and (3) Ser845 P-GluA1. Following acute administration of cocaine (15 mg/kg, i.p.) or D1 agonist (SKF 82958; 1 mg/kg, i.p.) there were significantly higher levels of Ser133 P-CREB, Thr34 P-DARPP-32, and Thr202/Tyr204 P-ERK2 in the Str that were evident in all animals tested. However, these cocaine-induced increases in phosphorylation were significantly augmented in PCOC mice compared to PSAL mice. In sharp contrast to the observations in the Str, in the NAc, acute administration of cocaine or D1 agonist significantly increased P-CREB and P-ERK2 in PSAL mice, a response that was not evident in PCOC mice. Examination of Ser 845 P-GluA1 revealed that cocaine or D1 agonist significantly increased levels in PSAL mice, but significantly decreased levels in the PCOC mice in both the Str and NAc. We also examined changes in brain-derived neurotrophic factor (BDNF). Our studies revealed significantly higher levels of the BDNF precursor, pro-BDNF, and one of its receptors, TrkB in the Str of PCOC mice compared to PSAL mice. These results suggest a persistent up-regulation of molecules critical to D1 and BDNF signaling in the Str of adult mice exposed to cocaine in utero. These molecular adaptations may underlie components of the behavioral deficits evident in exposed animals and a subset of exposed humans, and may represent a therapeutic target for ameliorating aspects of the PCOC-induced phenotype.


Neurotherapeutics | 2017

From Gene to Behavior: L-Type Calcium Channel Mechanisms Underlying Neuropsychiatric Symptoms

Zeeba D. Kabir; Arlene Martínez-Rivera; Anjali M. Rajadhyaksha

The L-type calcium channels (LTCCs) Cav1.2 and Cav1.3, encoded by the CACNA1C and CACNA1D genes, respectively, are important regulators of calcium influx into cells and are critical for normal brain development and plasticity. In humans, CACNA1C has emerged as one of the most widely reproduced and prominent candidate risk genes for a range of neuropsychiatric disorders, including bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. Separately, CACNA1D has been found to be associated with BD and autism spectrum disorder, as well as cocaine dependence, a comorbid feature associated with psychiatric disorders. Despite growing evidence of a significant link between CACNA1C and CACNA1D and psychiatric disorders, our understanding of the biological mechanisms by which these LTCCs mediate neuropsychiatric-associated endophenotypes, many of which are shared across the different disorders, remains rudimentary. Clinical studies with LTCC blockers testing their efficacy to alleviate symptoms associated with BD, SCZ, and drug dependence have provided mixed results, underscoring the importance of further exploring the neurobiological consequences of dysregulated Cav1.2 and Cav1.3. Here, we provide a review of clinical studies that have evaluated LTCC blockers for BD, SCZ, and drug dependence-associated symptoms, as well as rodent studies that have identified Cav1.2- and Cav1.3-specific molecular and cellular cascades that underlie mood (anxiety, depression), social behavior, cognition, and addiction.


Developmental Neuroscience | 2012

Brain-derived neurotrophic factor genotype impacts the prenatal cocaine-induced mouse phenotype.

Zeeba D. Kabir; Frederico Lourenco; Maureen E. Byrne; Aaron Katzman; Francis S. Lee; Anjali M. Rajadhyaksha; Barry E. Kosofsky

Prenatal cocaine exposure leads to persistent alterations in the growth factor brain-derived neurotrophic factor (BDNF), particularly in the medial prefrontal cortex (mPFC) and hippocampus, brain regions important in cognitive functioning. BDNF plays an important role in the strengthening of existing synaptic connections as well as in the formation of new contacts during learning. A single nucleotide polymorphism in the BDNF gene (Val66Met), leading to a Met substitution for Val at codon 66 in the prodomain, is common in human populations, with an allele frequency of 20–30% in Caucasians. To study the interaction between prenatal cocaine exposure and BDNF, we have utilized a line of BDNF Val66Met transgenic mice on a Swiss Webster background in which BDNFMet is endogenously expressed. Examination of baseline levels of mature BDNF protein in the mPFC of prenatally cocaine-treated wild-type (Val66Val) and Val66Met mice revealed significantly lower levels compared to prenatally saline-treated mice. In contrast, in the hippocampus of prenatally saline- and cocaine-treated adult Val66Met mice, there were significantly lower levels of mature BDNF protein compared to Val66Val mice. In extinction of a conditioned fear, we found that prenatally cocaine-treated Val66Met mice had a deficit in recall of extinction. Examination of mature BDNF protein levels immediately after the test for extinction recall revealed lower levels in the mPFC of prenatally cocaine-treated Val66Met mice compared to saline-treated mice. However, 2 h after the extinction test, there was increased BDNF exons I, IV, and IX mRNA expression in the prelimbic cortex of the mPFC in the prenatally cocaine-treated BDNF Val66Met mice compared to prenatally saline-treated mice. Taken together, our results suggest the possibility that prenatal cocaine-induced constitutive alterations in BDNF mRNA and protein expression in the mPFC differentially poises animals for alterations in behaviorally induced gene activation, which are interactive with BDNF genotype and differentially impact those behaviors. Such findings in our prenatal cocaine mouse model suggest a gene X environment interaction of potential clinical relevance.


Developmental Neuroscience | 2014

Effects of Prenatal Cocaine Exposure on Social Development in Mice

Zeeba D. Kabir; Bruce C. Kennedy; Aaron Katzman; Garet P. Lahvis; Barry E. Kosofsky

Prenatal cocaine exposure (PCE) in humans and animals has been shown to impair social development. Molecules that mediate synaptic plasticity and learning in the medial prefrontal cortex (mPFC), specifically brain-derived neurotrophic factor (BDNF) and its downstream signaling molecule, early growth response protein 1 (egr1), have been shown to affect the regulation of social interactions (SI). In this study we determined the effects of PCE on SI and the corresponding ultrasonic vocalizations (USVs) in developing mice. Furthermore, we studied the PCE-induced changes in the constitutive expression of BDNF, egr1 and their transcriptional regulators in the mPFC as a possible molecular mechanism mediating the altered SI. In prenatal cocaine-exposed (PCOC) mice we identified increased SI and USV production at postnatal day (PD) 25, and increased SI but not USVs at PD35. By PD45 the expression of both social behaviors normalized in PCOC mice. At the molecular level, we found increased BDNF exon IV and egr1 mRNA in the mPFC of PCOC mice at PD30 that normalized by PD45. This was concurrent with increased EGR1 protein in the mPFC of PCOC mice at PD30, suggesting a role of egr1 in the enhanced SI observed in juvenile PCOC mice. Additionally, by measuring the association of acetylation of histone 3 at lysine residues 9 and 14 (acH3K9,14) and MeCP2 at the promoters of BDNF exons I and IV and egr1, our results provide evidence of promoter-specific alterations in the mPFC of PCOC juvenile mice, with increased association of acH3K9,14 only at the BDNF exon IV promoter. These results identify a potential PCE-induced molecular alteration as the underlying neurobiological mechanism mediating the altered social development in juvenile mice.


PLOS ONE | 2017

D-cycloserine improves synaptic transmission in an animal mode of Rett syndrome

Elisa S. Na; Héctor De Jesús-Cortés; Arlene Martínez-Rivera; Zeeba D. Kabir; Jieqi Wang; Vijayashree Ramesh; Yasemin Onder; Anjali M. Rajadhyaksha; Lisa M. Monteggia; Andrew A. Pieper

Rett syndrome (RTT), a leading cause of intellectual disability in girls, is predominantly caused by mutations in the X-linked gene MECP2. Disruption of Mecp2 in mice recapitulates major features of RTT, including neurobehavioral abnormalities, which can be reversed by re-expression of normal Mecp2. Thus, there is reason to believe that RTT could be amenable to therapeutic intervention throughout the lifespan of patients after the onset of symptoms. A common feature underlying neuropsychiatric disorders, including RTT, is altered synaptic function in the brain. Here, we show that Mecp2tm1.1Jae/y mice display lower presynaptic function as assessed by paired pulse ratio, as well as decreased long term potentiation (LTP) at hippocampal Schaffer–collateral-CA1 synapses. Treatment of Mecp2tm1.1Jae/y mice with D-cycloserine (DCS), an FDA-approved analog of the amino acid D-alanine with antibiotic and glycinergic activity, corrected the presynaptic but not LTP deficit without affecting deficient hippocampal BDNF levels. DCS treatment did, however, partially restore lower BDNF levels in the brain stem and striatum. Thus, treatment with DCS may mitigate the severity of some of the neurobehavioral symptoms experienced by patients with Rett syndrome.


Science Translational Medicine | 2013

Cup of Joe: A Brain Development “No”?

Zeeba D. Kabir; Deirdre M. McCarthy; Pradeep G. Bhide; Barry E. Kosofsky

Treating pregnant mice with adenosine receptor antagonists including caffeine results in delayed migration of cortical GABA neurons and altered brain development in mouse offspring (Silva et al.). Treating pregnant mice with adenosine receptor antagonists including caffeine results in delayed migration of cortical γ-aminobutyric acid neurons and altered brain development in mouse offspring (Silva et al.).

Collaboration


Dive into the Zeeba D. Kabir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew A. Pieper

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deirdre M. McCarthy

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge