Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zelda Euler is active.

Publication


Featured researches published by Zelda Euler.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies

Hugo Mouquet; Louise Scharf; Zelda Euler; Yan Liu; Caroline Eden; Johannes F. Scheid; Ariel Halper-Stromberg; Priyanthi N. P. Gnanapragasam; Daniel I. R. Spencer; Michael S. Seaman; Hanneke Schuitemaker; Ten Feizi; Michel C. Nussenzweig; Pamela J. Bjorkman

Broadly neutralizing HIV antibodies (bNAbs) can recognize carbohydrate-dependent epitopes on gp120. In contrast to previously characterized glycan-dependent bNAbs that recognize high-mannose N-glycans, PGT121 binds complex-type N-glycans in glycan microarrays. We isolated the B-cell clone encoding PGT121, which segregates into PGT121-like and 10-1074–like groups distinguished by sequence, binding affinity, carbohydrate recognition, and neutralizing activity. Group 10-1074 exhibits remarkable potency and breadth but no detectable binding to protein-free glycans. Crystal structures of unliganded PGT121, 10-1074, and their likely germ-line precursor reveal that differential carbohydrate recognition maps to a cleft between complementarity determining region (CDR)H2 and CDRH3. This cleft was occupied by a complex-type N-glycan in a “liganded” PGT121 structure. Swapping glycan contact residues between PGT121 and 10-1074 confirmed their importance for neutralization. Although PGT121 binds complex-type N-glycans, PGT121 recognized high-mannose-only HIV envelopes in isolation and on virions. As HIV envelopes exhibit varying proportions of high-mannose- and complex-type N-glycans, these results suggest promiscuous carbohydrate interactions, an advantageous adaptation ensuring neutralization of all viruses within a given strain.


The Journal of Infectious Diseases | 2010

Cross-Reactive Neutralizing Humoral Immunity Does Not Protect from HIV Type 1 Disease Progression

Zelda Euler; Marit J. van Gils; Evelien M. Bunnik; Pham Phung; Becky Schweighardt; Terri Wrin; Hanneke Schuitemaker

Broadly reactive neutralizing antibodies are the focus of human immunodeficiency virus (HIV) type 1 vaccine design. However, only little is known about their role in acquired immunodeficiency syndrome (AIDS) pathogenesis and the factors associated with their development. Here we used a multisubtype panel of 23 HIV-1 variants to determine the prevalence of cross-reactive neutralizing activity in serum samples obtained approximately 35 months after seroconversion from 82 HIV-1 subtype B-infected participants from the Amsterdam Cohort Studies on HIV Infection and AIDS. Of these patients, 33%, 48%, and 20%, respectively, had strong, moderate, or absent cross-reactive neutralizing activity in serum. Viral RNA load at set point and AIDS-free survival were similar for the 3 patient groups. However, higher cross-reactive neutralizing activity was significantly associated with lower CD4(+) T cell counts before and soon after infection. Our findings underscore the importance of vaccine-elicited immunity in protecting from infection. The association between CD4(+) T cell counts and neutralizing humoral immunity may provide new clues as to how to achieve this goal.


Journal of Virology | 2012

The Development of CD4 Binding Site Antibodies During HIV-1 Infection

Rebecca M. Lynch; Lillian Tran; Mark K. Louder; Stefan D. Schmidt; Myron S. Cohen; Rebecca DerSimonian; Zelda Euler; Elin S. Gray; Salim Safurdeen. Abdool Karim; Jennifer L. Kirchherr; David C. Montefiori; Sengeziwe Sibeko; Kelly A. Soderberg; Georgia D. Tomaras; Zhi-Yong Yang; Gary J. Nabel; Hanneke Schuitemaker; Lynn Morris; Barton F. Haynes; John R. Mascola

ABSTRACT Broadly neutralizing antibodies to the CD4 binding site (CD4bs) of gp120 are generated by some HIV-1-infected individuals, but little is known about the prevalence and evolution of this antibody response during the course of HIV-1 infection. We analyzed the sera of 113 HIV-1 seroconverters from three cohorts for binding to a panel of gp120 core proteins and their corresponding CD4bs knockout mutants. Among sera collected between 99 and 258 weeks post-HIV-1 infection, 88% contained antibodies to the CD4bs and 47% contained antibodies to resurfaced stabilized core (RSC) probes that react preferentially with broadly neutralizing CD4bs antibodies (BNCD4), such as monoclonal antibodies (MAbs) VRC01 and VRC-CH31. Analysis of longitudinal serum samples from a subset of 18 subjects revealed that CD4bs antibodies to gp120 arose within the first 4 to 16 weeks of infection, while the development of RSC-reactive antibodies was more varied, occurring between 10 and 152 weeks post-HIV-1 infection. Despite the presence of these antibodies, serum neutralization mediated by RSC-reactive antibodies was detected in sera from only a few donors infected for more than 3 years. Thus, CD4bs antibodies that bind a VRC01-like epitope are often induced during HIV-1 infection, but the level and potency required to mediate serum neutralization may take years to develop. An improved understanding of the immunological factors associated with the development and maturation of neutralizing CD4bs antibodies during HIV-1 infection may provide insights into the requirements for eliciting this response by vaccination.


Nature Medicine | 2010

Adaptation of HIV-1 envelope gp120 to humoral immunity at a population level

Evelien M. Bunnik; Zelda Euler; Matthijs R.A. Welkers; Brigitte Boeser-Nunnink; Marlous L. Grijsen; Jan M. Prins; Hanneke Schuitemaker

By comparing HIV-1 variants from people who became infected at the beginning of the epidemic and from people who have recently contracted the virus, we observed an enhanced resistance of the virus to antibody neutralization over time, accompanied by an increase in the length of the variable loops and in the number of potential N-linked glycosylation sites on the HIV-1 envelope gp120 subunit. The enhanced neutralization resistance of HIV-1 in contemporary seroconverters coincided with the poorer elicitation of neutralizing antibody responses, which may have implications for vaccine design.


AIDS | 2009

Prevalence of cross-reactive HIV-1-neutralizing activity in HIV-1-infected patients with rapid or slow disease progression.

Marit J. van Gils; Zelda Euler; Becky Schweighardt; Terri Wrin; Hanneke Schuitemaker

Objective:The native envelope gp160 trimer of HIV-1 is thought to shield vulnerable epitopes that could otherwise elicit effectively neutralizing antibodies. However, little is known about the prevalence of naturally occurring broadly neutralizing activity in serum of HIV-1-infected individuals. Methods:Here, we studied 35 participants of the Amsterdam Cohort Studies on HIV-1 infection (20 long-term nonprogressors and 15 progressors) for the presence of cross-reactive neutralizing activity in their sera at 2 and 4 years after seroconversion. Neutralizing activity was tested in a pseudovirus assay, against a panel of HIV-1 envelope variants from subtypes A, B, C, and D. Results:Already at year 2 after seroconversion, seven out of 35 individuals (20%) had cross-reactive neutralizing activity, which increased to 11 individuals (31%) at 4 years after seroconversion. There was no difference in the prevalence of cross-reactive neutralizing serum activity between long-term nonprogressors and progressors.Interestingly, high plasma viral RNA load and low CD4+ cell count at set-point were associated with early development of cross-reactive neutralizing activity. Neutralization titers in serum increased during the course of infection for 91% of individuals studied here, although less rapidly for those who did not develop cross-reactive neutralizing activity. Conclusion:Overall, we here demonstrate a relatively high prevalence of cross-reactive neutralizing serum activity in HIV-1-infected patients, which increased with duration of infection. These data may imply that immunogenicity of the native envelope spike of HIV-1 for eliciting cross-reactive humoral immune responses may be better than previously anticipated.


Journal of Virology | 2012

Longitudinal analysis of early HIV-1 specific neutralizing activity in an elite neutralizer and in five patients who developed cross-reactive neutralizing activity

Zelda Euler; Tom L. G. M. van den Kerkhof; Marit J. van Gils; Judith A. Burger; Diana Edo-Matas; Pham Phung; Terri Wrin; Hanneke Schuitemaker

ABSTRACT We previously established that at 3 years postseroconversion, ∼30% of HIV-infected individuals have cross-reactive neutralizing activity (CrNA) in their sera. Here we studied the kinetics with which CrNA develops and how these relate to the development of autologous neutralizing activity as well as viral escape and diversification. For this purpose, sera from five individuals with CrNA and one elite neutralizer that were obtained at three monthly intervals in the first year after seroconversion and at multiple intervals over the disease course were tested for neutralizing activity against an established multiclade panel of six viruses. The same serum samples, as well as sera from three individuals who lacked CrNA, were tested for their neutralizing activities against autologous clonal HIV-1 variants from multiple time points covering the disease course from seroconversion onward. The elite neutralizer already had CrNA at 9.8 months postseroconversion, in contrast with the findings for the other five patients, in whom CrNA was first detected at 20 to 35 months postseroconversion and peaked around 35 months postseroconversion. In all patients, CrNA coincided with neutralizing activity against autologous viruses that were isolated <12 months postseroconversion, while viruses from later time points had already escaped autologous neutralizing activity. Also, the peak in gp160 sequence diversity coincided with the peak of CrNA titers. Individuals who lacked CrNA had lower peak autologous neutralizing titers, viral escape, and sequence diversity than individuals with CrNA. A better understanding of the underlying factors that determine the presence of CrNA or even an elite neutralizer phenotype may aid in the design of an HIV-1 vaccine.


Journal of Virology | 2011

Activity of Broadly Neutralizing Antibodies, Including PG9, PG16, and VRC01, against Recently Transmitted Subtype B HIV-1 Variants from Early and Late in the Epidemic

Zelda Euler; Evelien M. Bunnik; Judith A. Burger; Brigitte Boeser-Nunnink; Marlous L. Grijsen; Jan M. Prins; Hanneke Schuitemaker

ABSTRACT For the development of a neutralizing antibody-based human immunodeficiency virus type 1 (HIV-1) vaccine, it is important to characterize which antibody specificities are most effective against currently circulating HIV-1 variants. We recently reported that HIV-1 has become more resistant to antibody neutralization over the course of the epidemic, and we here explore whether this increased neutralization resistance is also observed for the newly identified broadly neutralizing antibodies (BrNAbs) PG9, PG16, and VRC01. Furthermore, we performed a comprehensive analysis of the neutralizing sensitivity of currently circulating recently transmitted subtype B viruses to the currently most known BrNAbs. Virus variants isolated less than 6 months after seroconversion from individuals who seroconverted between 2003 and 2006 (n = 21) were significantly more resistant to neutralization by VRC01 than viruses from individuals who seroconverted between 1985 and 1989 (n = 14). In addition, viruses from contemporary seroconverters tended to be more resistant to neutralization by PG16, which coincided with the presence of more mutations at positions in the viral envelope that may potentially influence neutralization by this antibody. Despite this increased neutralization resistance, all recently transmitted viruses from contemporary seroconverters were sensitive to at least one BrNAb at concentrations of ≤5 μg/ml, with PG9, PG16, and VRC01 showing the greatest breadth of neutralization at lower concentrations. These results suggest that a vaccine capable of eliciting multiple BrNAb specificities will be necessary for protection of the population against HIV-1 infection.


PLOS Pathogens | 2015

Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies

Laura E. McCoy; Emilia Falkowska; Katherine Doores; Khoa Le; Devin Sok; Marit J. van Gils; Zelda Euler; Judith A. Burger; Michael S. Seaman; Rogier W. Sanders; Hanneke Schuitemaker; Pascal Poignard; Terri Wrin; Dennis R. Burton

The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design.


Retrovirology | 2013

HIV-1 envelope glycoprotein signatures that correlate with the development of cross-reactive neutralizing activity

Tom L. G. M. van den Kerkhof; K. Anton Feenstra; Zelda Euler; Marit J. van Gils; Linda W E Rijsdijk; Brigitte Boeser-Nunnink; Jaap Heringa; Hanneke Schuitemaker; Rogier W. Sanders

BackgroundCurrent HIV-1 envelope glycoprotein (Env) vaccines are unable to induce cross-reactive neutralizing antibodies. However, such antibodies are elicited in 10-30% of HIV-1 infected individuals, but it is unknown why these antibodies are induced in some individuals and not in others. We hypothesized that the Envs of early HIV-1 variants in individuals who develop cross-reactive neutralizing activity (CrNA) might have unique characteristics that support the induction of CrNA.ResultsWe retrospectively generated and analyzed env sequences of early HIV-1 clonal variants from 31 individuals with diverse levels of CrNA 2–4 years post-seroconversion. These sequences revealed a number of Env signatures that coincided with CrNA development. These included a statistically shorter variable region 1 and a lower probability of glycosylation as implied by a high ratio of NXS versus NXT glycosylation motifs. Furthermore, lower probability of glycosylation at position 332, which is involved in the epitopes of many broadly reactive neutralizing antibodies, was associated with the induction of CrNA. Finally, Sequence Harmony identified a number of amino acid changes associated with the development of CrNA. These residues mapped to various Env subdomains, but in particular to the first and fourth variable region as well as the underlying α2 helix of the third constant region.ConclusionsThese findings imply that the development of CrNA might depend on specific characteristics of early Env. Env signatures that correlate with the induction of CrNA might be relevant for the design of effective HIV-1 vaccines.


Journal of Translational Medicine | 2010

Rational design of HIV vaccines and microbicides: report of the EUROPRISE network annual conference 2010

Nicolas Ruffin; Marie Borggren; Zelda Euler; Fabio Fiorino; Katrijn Grupping; David Hallengärd; Aneele Javed; Kevin Mendonca; Charlotte Pollard; David Reinhart; Elisa Saba; Enas Sheik-Khalil; Annette E. Sköld; Serena Ziglio; Gabriella Scarlatti; Frances Gotch; Britta Wahren; Robin J. Shattock

Novel, exciting intervention strategies to prevent infection with HIV have been tested in the past year, and the field is rapidly evolving. EUROPRISE is a network of excellence sponsored by the European Commission and concerned with a wide range of activities including integrated developmental research on HIV vaccines and microbicides from discovery to early clinical trials. A central and timely theme of the network is the development of the unique concept of co-usage of vaccines and microbicides. This review, prepared by the PhD students of the network captures much of the research ongoing between the partners. The network is in its 5th year and involves over 50 institutions from 13 European countries together with 3 industrial partners; GSK, Novartis and Sanofi-Pasteur. EUROPRISE is involved in 31 separate world-wide trials of Vaccines and Microbicides including 6 in African countries (Tanzania, Mozambique, South Africa, Kenya, Malawi, Rwanda), and is directly supporting clinical trials including MABGEL, a gp140-hsp70 conjugate trial and HIVIS, vaccine trials in Europe and Africa.

Collaboration


Dive into the Zelda Euler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Seaman

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jan M. Prins

University of Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge