Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zeljko Vujaskovic is active.

Publication


Featured researches published by Zeljko Vujaskovic.


Journal of Clinical Oncology | 2009

Efficacy, Safety, and Biomarkers of Neoadjuvant Bevacizumab, Radiation Therapy, and Fluorouracil in Rectal Cancer: A Multidisciplinary Phase II Study

Christopher G. Willett; Dan G. Duda; Emmanuelle di Tomaso; Yves Boucher; Marek Ancukiewicz; Dushyant V. Sahani; Johanna Lahdenranta; Daniel C. Chung; Alan J. Fischman; Gregory Y. Lauwers; Paul C. Shellito; Brian G. Czito; Terence Z. Wong; Erik K. Paulson; Martin H. Poleski; Zeljko Vujaskovic; Rex C. Bentley; Helen X. Chen; Jeffrey W. Clark; Rakesh K. Jain

PURPOSE To assess the safety and efficacy of neoadjuvant bevacizumab with standard chemoradiotherapy in locally advanced rectal cancer and explore biomarkers for response. PATIENTS AND METHODS In a phase I/II study, 32 patients received four cycles of therapy consisting of: bevacizumab infusion (5 or 10 mg/kg) on day 1 of each cycle; fluorouracil infusion (225 mg/m(2)/24 hours) during cycles 2 to 4; external-beam irradiation (50.4 Gy in 28 fractions over 5.5 weeks); and surgery 7 to 10 weeks after completion of all therapies. We measured molecular, cellular, and physiologic biomarkers before treatment, during bevacizumab monotherapy, and during and after combination therapy. RESULTS Tumors regressed from a mass with mean size of 5 cm (range, 3 to 12 cm) to an ulcer/scar with mean size of 2.4 cm (range, 0.7 to 6.0 cm) in all 32 patients. Histologic examination revealed either no cancer or varying numbers of scattered cancer cells in a bed of fibrosis at the primary site. This treatment resulted in an actuarial 5-year local control and overall survival of 100%. Actuarial 5-year disease-free survival was 75% and five patients developed metastases postsurgery. Bevacizumab with chemoradiotherapy showed acceptable toxicity. Bevacizumab decreased tumor interstitial fluid pressure and blood flow. Baseline plasma soluble vascular endothelial growth factor receptor 1 (sVEGFR1), plasma vascular endothelial growth factor (VEGF), placental-derived growth factor (PlGF), and interleukin 6 (IL-6) during treatment, and circulating endothelial cells (CECs) after treatment showed significant correlations with outcome. CONCLUSION Bevacizumab with chemoradiotherapy appears safe and active and yields promising survival results in locally advanced rectal cancer. Plasma VEGF, PlGF, sVEGFR1, and IL-6 and CECs should be further evaluated as candidate biomarkers of response for this regimen.


Journal of Clinical Oncology | 2005

Randomized trial of hyperthermia and radiation for superficial tumors.

Ellen L. Jones; James R. Oleson; Leonard R. Prosnitz; Thaddeus V. Samulski; Zeljko Vujaskovic; Daohai Yu; Linda L. Sanders; Mark W. Dewhirst

PURPOSE Randomized clinical trials have demonstrated hyperthermia (HT) enhances radiation response. These trials, however, generally lacked rigorous thermal dose prescription and administration. We report the final results of a prospective randomized trial of superficial tumors (</= 3 cm depth) comparing radiotherapy versus HT combined with radiotherapy, using the parameter describing the number of cumulative equivalent minutes at 43 degrees C exceeded by 90% of monitored points within the tumor (CEM 43 degrees C T(90)) as a measure of thermal dose. METHODS This trial was designed to test whether a thermal dose of more than 10 CEM 43 degrees C T(90) results in improved complete response and duration of local control compared with a thermal dose of </= 1 CEM 43 degrees C T(90). Patients received a test dose of HT </= 1 CEM 43 degrees C T(90) and tumors deemed heatable were randomly assigned to additional HT versus no additional HT. HT was given using microwave spiral strip applicators operating at 433 MHz. RESULTS One hundred twenty-two patients were enrolled; 109 (89%) were deemed heatable and were randomly assigned. The complete response rate was 66.1% in the HT arm and 42.3% in the no-HT arm. The odds ratio for complete response was 2.7 (95% CI, 1.2 to 5.8; P = .02). Previously irradiated patients had the greatest incremental gain in complete response: 23.5% in the no-HT arm versus 68.2% in the HT arm. No overall survival benefit was seen. CONCLUSION Adjuvant hyperthermia with a thermal dose more than 10 CEM 43 degrees C T(90) confers a significant local control benefit in patients with superficial tumors receiving radiation therapy.


Lancet Oncology | 2010

Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study

Rolf D. Issels; Lars H. Lindner; Jaap Verweij; Peter Wust; Peter Reichardt; Baard-Christian Schem; S. Abdel-Rahman; Soeren Daugaard; Christoph Salat; Clemens-Martin Wendtner; Zeljko Vujaskovic; R. Wessalowski; Karl-Walter Jauch; Hans Roland Dürr; Ferdinand Ploner; Andrea Baur-Melnyk; Ulrich Mansmann; Wolfgang Hiddemann; Jean-Yves Blay; Peter Hohenberger

BACKGROUND The optimum treatment for high-risk soft-tissue sarcoma (STS) in adults is unclear. Regional hyperthermia concentrates the action of chemotherapy within the heated tumour region. Phase 2 studies have shown that chemotherapy with regional hyperthermia improves local control compared with chemotherapy alone. We designed a parallel-group randomised controlled trial to assess the safety and efficacy of regional hyperthermia with chemotherapy. METHODS Patients were recruited to the trial between July 21, 1997, and November 30, 2006, at nine centres in Europe and North America. Patients with localised high-risk STS (> or = 5 cm, Fédération Nationale des Centres de Lutte Contre le Cancer [FNCLCC] grade 2 or 3, deep to the fascia) were randomly assigned to receive either neo-adjuvant chemotherapy consisting of etoposide, ifosfamide, and doxorubicin (EIA) alone, or combined with regional hyperthermia (EIA plus regional hyperthermia) in addition to local therapy. Local progression-free survival (LPFS) was the primary endpoint. Efficacy analyses were done by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT 00003052. FINDINGS 341 patients were enrolled, with 169 randomly assigned to EIA plus regional hyperthermia and 172 to EIA alone. All patients were included in the analysis of the primary endpoint, and 332 patients who received at least one cycle of chemotherapy were included in the safety analysis. After a median follow-up of 34 months (IQR 20-67), 132 patients had local progression (56 EIA plus regional hyperthermia vs 76 EIA). Patients were more likely to experience local progression or death in the EIA-alone group compared with the EIA plus regional hyperthermia group (relative hazard [RH] 0.58, 95% CI 0.41-0.83; p=0.003), with an absolute difference in LPFS at 2 years of 15% (95% CI 6-26; 76% EIA plus regional hyperthermia vs 61% EIA). For disease-free survival the relative hazard was 0.70 (95% CI 0.54-0.92, p=0.011) for EIA plus regional hyperthermia compared with EIA alone. The treatment response rate in the group that received regional hyperthermia was 28.8%, compared with 12.7% in the group who received chemotherapy alone (p=0.002). In a pre-specified per-protocol analysis of patients who completed EIA plus regional hyperthermia induction therapy compared with those who completed EIA alone, overall survival was better in the combined therapy group (HR 0.66, 95% CI 0.45-0.98, p=0.038). Leucopenia (grade 3 or 4) was more frequent in the EIA plus regional hyperthermia group compared with the EIA-alone group (128 of 165 vs 106 of 167, p=0.005). Hyperthermia-related adverse events were pain, bolus pressure, and skin burn, which were mild to moderate in 66 (40.5%), 43 (26.4%), and 29 patients (17.8%), and severe in seven (4.3%), eight (4.9%), and one patient (0.6%), respectively. Two deaths were attributable to treatment in the combined treatment group, and one death was attributable to treatment in the EIA-alone group. INTERPRETATION To our knowledge, this is the first randomised phase 3 trial to show that regional hyperthermia increases the benefit of chemotherapy. Adding regional hyperthermia to chemotherapy is a new effective treatment strategy for patients with high-risk STS, including STS with an abdominal or retroperitoneal location. FUNDING Deutsche Krebshilfe, Helmholtz Association (HGF), European Organisation of Research and Treatment of Cancer (EORTC), European Society for Hyperthermic Oncology (ESHO), and US National Institute of Health (NIH).


International Journal of Hyperthermia | 2006

Hyperthermia mediated liposomal drug delivery.

Ana M. Ponce; Zeljko Vujaskovic; Fan Yuan; David Needham; Mark W. Dewhirst

Drug delivery systems have been developed for cancer therapy in an attempt to increase the tumour drug concentration while limiting systemic exposure. Liposomes have achieved passive targeting of solid tumours through enhanced vascular permeability, which is greatly augmented by hyperthermia. However, anti-tumour efficacy has often been limited by slow release of bioavailable drug within the tumour. Local hyperthermia has become the most widely used stimulus for triggered release of liposomal drugs, through the use of specific lipids, polymers or other modifiers. A temperature-sensitive liposome containing doxorubicin has been shown to release 100% of contents through stabilized membrane pores within 10–20 s at 41°C. This formulation has exhibited dramatic improvements in pre-clinical drug delivery and tumour regression and is now in clinical trials. Significantly, recent studies show that this liposome, in combination with local hyperthermia, exhibits vascular shutdown as a mechanism of anti-tumour effect that is not observed with free doxorubicin.


International Journal of Hyperthermia | 2005

Re-setting the biologic rationale for thermal therapy

Mark W. Dewhirst; Zeljko Vujaskovic; Ellen L. Jones

This review takes a retrospective look at how hyperthermia biology, as defined from studies emerging from the late 1970s and into the 1980s, mis-directed the clinical field of hyperthermia, by placing too much emphasis on the necessity of killing cells with hyperthermia in order to define success. The requirement that cell killing be achieved led to sub-optimal hyperthermia fractionation goals for combinations with radiotherapy, inappropriate sequencing between radiation and hyperthermia and goals for hyperthermia equipment performance that were neither achievable nor necessary. The review then considers the importance of the biologic effects of hyperthermia that occur in the temperature range that lies between that necessary to kill substantial proportions of cells and normothermia (e.g. 39–42°C for 1 h). The effects that occur in this temperature range are compelling including—inhibition of radiation-induced damage repair, changes in perfusion, re-oxygenation, effects on macromolecular and nanoparticle delivery, induction of the heat shock response and immunological stimulation, all of which can be exploited to improve tumour response to radiation and chemotherapy. This new knowledge about the biology of hyperthermia compels one to continue to move the field forward, but with thermal goals that are eminently achievable and tolerable by patients. The fact that lower temperatures are incorporated into thermal goals does not lessen the need for non-invasive thermometry or more sophisticated hyperthermia delivery systems, however. If anything, it further compels one to move the field forward on an integrated biological, engineering and clinical level.


Free Radical Biology and Medicine | 2002

A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury.

Zeljko Vujaskovic; Ines Batinic-Haberle; Zahid N. Rabbani; Qin-fu Feng; Song K Kang; Ivan Spasojevic; Thaddeus V. Samulski; Irwin Fridovich; Mark W. Dewhirst; Mitchell S. Anscher

Abstract Radiation therapy (RT) is an important therapeutic modality in the treatment of thoracic tumors. The maximum doses to these tumors are often limited by the radiation tolerance of lung tissues. Lung injury from ionizing radiation is believed to be a consequence of oxidative stress and a cascade of cytokine activity. Superoxide dismutase (SOD) is a key enzyme in cellular defenses against oxidative damage. The objective of this study was to determine whether the SOD mimetic AEOL 10113 [manganese (III) mesotetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP5+)] increases the tolerance of lung to ionizing radiation. AEOL 10113 was able to significantly reduce the severity of RT-induced lung injury. This was strongly supported with histopathology results and measurements of collagen deposition (hydroxyproline content). There was a significant reduction in the plasma level of the profibrogenic cytokine transforming growth factor-β (TGF-β) in the group of rats receiving RT + AEOL 10113. In conclusion, the novel SOD mimetic, AEOL 10113, demonstrates a significant protective effect from radiation-induced lung injury.


International Journal of Radiation Oncology Biology Physics | 2001

Radiation-induced hypoxia may perpetuate late normal tissue injury

Zeljko Vujaskovic; Mitchell S. Anscher; Qin Fu Feng; Zahid N. Rabbani; Khalid Amin; T. Samulski; Mark W. Dewhirst; Zishan A. Haroon

PURPOSE The purpose of this study was to determine whether or not hypoxia develops in rat lung tissue after radiation. METHODS AND MATERIALS Fisher-344 rats were irradiated to the right hemithorax using a single dose of 28 Gy. Pulmonary function was assessed by measuring the changes in respiratory rate every 2 weeks, for 6 months after irradiation. The hypoxia marker was administered 3 h before euthanasia. The tissues were harvested at 6 weeks and 6 months after irradiation and processed for immunohistochemistry. RESULTS A moderate hypoxia was detected in the rat lungs at 6 weeks after irradiation, before the onset of functional or histopathologic changes. The more severe hypoxia, that developed at the later time points (6 months) after irradiation, was associated with a significant increase in macrophage activity, collagen deposition, lung fibrosis, and elevation in the respiratory rate. Immunohistochemistry studies revealed an increase in TGF-beta, VEGF, and CD-31 endothelial cell marker, suggesting a hypoxia-mediated activation of the profibrinogenic and proangiogenic pathways. CONCLUSION A new paradigm of radiation-induced lung injury should consider postradiation hypoxia to be an important contributing factor mediating a continuous production of a number of inflammatory and fibrogenic cytokines.


Clinical Cancer Research | 2006

Gene Expression Profiles of Multiple Breast Cancer Phenotypes and Response to Neoadjuvant Chemotherapy

Holly K. Dressman; Chris Hans; Andrea Bild; John A. Olson; Eric L. Rosen; P. Kelly Marcom; Vlayka Liotcheva; Ellen L. Jones; Zeljko Vujaskovic; Jeffrey R. Marks; Mark W. Dewhirst; Mike West; Joseph R. Nevins; Kimberly L. Blackwell

Purpose: Breast cancer is a heterogeneous disease, and markers for disease subtypes and therapy response remain poorly defined. For that reason, we employed a prospective neoadjuvant study in locally advanced breast cancer to identify molecular signatures of gene expression correlating with known prognostic clinical phenotypes, such as inflammatory breast cancer or the presence of hypoxia. In addition, we defined molecular signatures that correlate with response to neoadjuvant chemotherapy. Experimental Design: Tissue was collected under ultrasound guidance from patients with stage IIB/III breast cancer before four cycles of neoadjuvant liposomal doxorubicin paclitaxel chemotherapy combined with local whole breast hyperthermia. Gene expression analysis was done using Affymetrix U133 Plus 2.0 GeneChip arrays. Results: Gene expression patterns were identified that defined the phenotypes of inflammatory breast cancer as well as tumor hypoxia. In addition, molecular signatures were identified that predicted the persistence of malignancy in the axillary lymph nodes after neoadjuvant chemotherapy. This persistent lymph node signature significantly correlated with disease-free survival in two separate large populations of breast cancer patients. Conclusions: Gene expression signatures have the capacity to identify clinically significant features of breast cancer and can predict which individual patients are likely to be resistant to neoadjuvant therapy, thus providing the opportunity to guide treatment decisions.


Antioxidants & Redox Signaling | 2014

SOD Therapeutics: Latest Insights into Their Structure-Activity Relationships and Impact on the Cellular Redox-Based Signaling Pathways

Ines Batinic-Haberle; Artak Tovmasyan; Emily R.H. Roberts; Zeljko Vujaskovic; Kam W. Leong; Ivan Spasojevic

SIGNIFICANCE Superoxide dismutase (SOD) enzymes are indispensable and ubiquitous antioxidant defenses maintaining the steady-state levels of O2·(-); no wonder, thus, that their mimics are remarkably efficacious in essentially any animal model of oxidative stress injuries thus far explored. RECENT ADVANCES Structure-activity relationship (half-wave reduction potential [E1/2] versus log kcat), originally reported for Mn porphyrins (MnPs), is valid for any other class of SOD mimics, as it is dominated by the superoxide reduction and oxidation potential. The biocompatible E1/2 of ∼+300 mV versus normal hydrogen electrode (NHE) allows powerful SOD mimics as mild oxidants and antioxidants (alike O2·(-)) to readily traffic electrons among reactive species and signaling proteins, serving as fine mediators of redox-based signaling pathways. Based on similar thermodynamics, both SOD enzymes and their mimics undergo similar reactions, however, due to vastly different sterics, with different rate constants. CRITICAL ISSUES Although log kcat(O2·(-)) is a good measure of therapeutic potential of SOD mimics, discussions of their in vivo mechanisms of actions remain mostly of speculative character. Most recently, the therapeutic and mechanistic relevance of oxidation of ascorbate and glutathionylation and oxidation of protein thiols by MnP-based SOD mimics and subsequent inactivation of nuclear factor κB has been substantiated in rescuing normal and killing cancer cells. Interaction of MnPs with thiols seems to be, at least in part, involved in up-regulation of endogenous antioxidative defenses, leading to the healing of diseased cells. FUTURE DIRECTIONS Mechanistic explorations of single and combined therapeutic strategies, along with studies of bioavailability and translational aspects, will comprise future work in optimizing redox-active drugs.


Cancer Research | 2004

Enhancement of Hypoxia-Induced Tumor Cell Death In vitro and Radiation Therapy In vivo by Use of Small Interfering RNA Targeted to Hypoxia-Inducible Factor-1α

Xiuwu Zhang; Takashi Kon; He Wang; Fang Li; Qian Huang; Zahid N. Rabbani; John P. Kirkpatrick; Zeljko Vujaskovic; Mark W. Dewhirst; Chuan-Yuan Li

Hypoxia-inducible factor-1α (HIF-1α) is an important transcriptional factor that is activated when mammalian cells experience hypoxia, a tumor microenvironmental condition that plays pivotal roles in tumor progression and treatment. In this study, we examined the idea of down-regulating HIF-1α in tumor cells for therapeutic gain. We show that the expression levels of HIF-1α can be significantly attenuated by use of the recently established small interfering RNA technology in combination with adenovirus-mediated gene transfer. Down-regulation of the HIF-1α protein enhanced hypoxia-mediated tumor cell apoptosis in vitro. Subcutaneous tumor growth was also prevented from cells with attenuated HIF-1α expression. In addition, intratumoral injection of adenovirus encoding the HIF-1α-targeted small interfering RNA had a small but significant effect on tumor growth when combined with ionizing radiation. Therefore, our results provide proof of HIF-1α as an effective target for anticancer therapy. They also suggest that an adenovirus-based small interfering RNA gene transfer approach may be a potentially effective adjuvant strategy for cancer treatment.

Collaboration


Dive into the Zeljko Vujaskovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitchell S. Anscher

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Ellen L. Jones

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge