Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zahid N. Rabbani is active.

Publication


Featured researches published by Zahid N. Rabbani.


Journal of Clinical Investigation | 2008

Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice

Pierre Sonveaux; Frédérique Végran; Thies Schroeder; Melanie Wergin; Julien Verrax; Zahid N. Rabbani; Christophe De Saedeleer; Kelly M. Kennedy; Caroline Diepart; Bénédicte F. Jordan; Michael J. Kelley; Bernard Gallez; Miriam L. Wahl; Olivier Feron; Mark W. Dewhirst

Tumors contain oxygenated and hypoxic regions, so the tumor cell population is heterogeneous. Hypoxic tumor cells primarily use glucose for glycolytic energy production and release lactic acid, creating a lactate gradient that mirrors the oxygen gradient in the tumor. By contrast, oxygenated tumor cells have been thought to primarily use glucose for oxidative energy production. Although lactate is generally considered a waste product, we now show that it is a prominent substrate that fuels the oxidative metabolism of oxygenated tumor cells. There is therefore a symbiosis in which glycolytic and oxidative tumor cells mutually regulate their access to energy metabolites. We identified monocarboxylate transporter 1 (MCT1) as the prominent path for lactate uptake by a human cervix squamous carcinoma cell line that preferentially utilized lactate for oxidative metabolism. Inhibiting MCT1 with alpha-cyano-4-hydroxycinnamate (CHC) or siRNA in these cells induced a switch from lactate-fueled respiration to glycolysis. A similar switch from lactate-fueled respiration to glycolysis by oxygenated tumor cells in both a mouse model of lung carcinoma and xenotransplanted human colorectal adenocarcinoma cells was observed after administration of CHC. This retarded tumor growth, as the hypoxic/glycolytic tumor cells died from glucose starvation, and rendered the remaining cells sensitive to irradiation. As MCT1 was found to be expressed by an array of primary human tumors, we suggest that MCT1 inhibition has clinical antitumor potential.


Free Radical Biology and Medicine | 2002

A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury.

Zeljko Vujaskovic; Ines Batinic-Haberle; Zahid N. Rabbani; Qin-fu Feng; Song K Kang; Ivan Spasojevic; Thaddeus V. Samulski; Irwin Fridovich; Mark W. Dewhirst; Mitchell S. Anscher

Abstract Radiation therapy (RT) is an important therapeutic modality in the treatment of thoracic tumors. The maximum doses to these tumors are often limited by the radiation tolerance of lung tissues. Lung injury from ionizing radiation is believed to be a consequence of oxidative stress and a cascade of cytokine activity. Superoxide dismutase (SOD) is a key enzyme in cellular defenses against oxidative damage. The objective of this study was to determine whether the SOD mimetic AEOL 10113 [manganese (III) mesotetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP5+)] increases the tolerance of lung to ionizing radiation. AEOL 10113 was able to significantly reduce the severity of RT-induced lung injury. This was strongly supported with histopathology results and measurements of collagen deposition (hydroxyproline content). There was a significant reduction in the plasma level of the profibrogenic cytokine transforming growth factor-β (TGF-β) in the group of rats receiving RT + AEOL 10113. In conclusion, the novel SOD mimetic, AEOL 10113, demonstrates a significant protective effect from radiation-induced lung injury.


International Journal of Radiation Oncology Biology Physics | 2001

Radiation-induced hypoxia may perpetuate late normal tissue injury

Zeljko Vujaskovic; Mitchell S. Anscher; Qin Fu Feng; Zahid N. Rabbani; Khalid Amin; T. Samulski; Mark W. Dewhirst; Zishan A. Haroon

PURPOSE The purpose of this study was to determine whether or not hypoxia develops in rat lung tissue after radiation. METHODS AND MATERIALS Fisher-344 rats were irradiated to the right hemithorax using a single dose of 28 Gy. Pulmonary function was assessed by measuring the changes in respiratory rate every 2 weeks, for 6 months after irradiation. The hypoxia marker was administered 3 h before euthanasia. The tissues were harvested at 6 weeks and 6 months after irradiation and processed for immunohistochemistry. RESULTS A moderate hypoxia was detected in the rat lungs at 6 weeks after irradiation, before the onset of functional or histopathologic changes. The more severe hypoxia, that developed at the later time points (6 months) after irradiation, was associated with a significant increase in macrophage activity, collagen deposition, lung fibrosis, and elevation in the respiratory rate. Immunohistochemistry studies revealed an increase in TGF-beta, VEGF, and CD-31 endothelial cell marker, suggesting a hypoxia-mediated activation of the profibrinogenic and proangiogenic pathways. CONCLUSION A new paradigm of radiation-induced lung injury should consider postradiation hypoxia to be an important contributing factor mediating a continuous production of a number of inflammatory and fibrogenic cytokines.


Nature Chemical Biology | 2010

In vivo selection of tumor-targeting RNA motifs

Jing Mi; Yingmiao Liu; Zahid N. Rabbani; Johannes H. Urban; Bruce A. Sullenger; Bryan M. Clary

In an effort to target the in vivo context of tumor-specific moieties, a large library of nuclease-resistant RNA oligonucleotides was screened in tumor-bearing mice to identify candidate molecules with the ability to localize to hepatic colon cancer metastases. One of the selected molecules is an RNA aptamer that binds to protein p68, an RNA helicase that has been shown to be upregulated in colorectal cancer.


Cancer Research | 2004

Enhancement of Hypoxia-Induced Tumor Cell Death In vitro and Radiation Therapy In vivo by Use of Small Interfering RNA Targeted to Hypoxia-Inducible Factor-1α

Xiuwu Zhang; Takashi Kon; He Wang; Fang Li; Qian Huang; Zahid N. Rabbani; John P. Kirkpatrick; Zeljko Vujaskovic; Mark W. Dewhirst; Chuan-Yuan Li

Hypoxia-inducible factor-1α (HIF-1α) is an important transcriptional factor that is activated when mammalian cells experience hypoxia, a tumor microenvironmental condition that plays pivotal roles in tumor progression and treatment. In this study, we examined the idea of down-regulating HIF-1α in tumor cells for therapeutic gain. We show that the expression levels of HIF-1α can be significantly attenuated by use of the recently established small interfering RNA technology in combination with adenovirus-mediated gene transfer. Down-regulation of the HIF-1α protein enhanced hypoxia-mediated tumor cell apoptosis in vitro. Subcutaneous tumor growth was also prevented from cells with attenuated HIF-1α expression. In addition, intratumoral injection of adenovirus encoding the HIF-1α-targeted small interfering RNA had a small but significant effect on tumor growth when combined with ionizing radiation. Therefore, our results provide proof of HIF-1α as an effective target for anticancer therapy. They also suggest that an adenovirus-based small interfering RNA gene transfer approach may be a potentially effective adjuvant strategy for cancer treatment.


International Journal of Radiation Oncology Biology Physics | 2003

OVEREXPRESSION OF EXTRACELLULAR SUPEROXIDE DISMUTASE PROTECTS MICE FROM RADIATION-INDUCED LUNG INJURY

Song K Kang; Zahid N. Rabbani; Rodney J. Folz; Maria L. Golson; Hong Huang; Daohai Yu; T. Samulski; Mark W. Dewhirst; Mitchell S. Anscher; Zeljko Vujaskovic

PURPOSE The purpose of this study was to determine if radiation-induced lung injury is associated with prolonged oxidative stress, and whether chronic overexpression of extracellular superoxide dismutase (EC-SOD) in the lung of transgenic mice protects against radiation-induced lung injury. METHODS AND MATERIALS Whole-lung radiation was delivered to EC-SOD overexpressing B6C3 transgenic (XRT-TG) mice and wild-type littermates (XRT-WT). Pulmonary function was assessed by breathing frequency. Right lung wet weight was used as a gross indicator of lung damage. Histopathology was used to assess collagen deposition and tissue fibrosis according to an established grading system. Immunohistochemistry was used to stain and quantify the number of macrophages. ELISA was used to measure activated TGF-beta1. Oxidative stress was assessed by measuring lipid oxidation products (malondialic acid) by HPLC. RESULTS Four of six XRT-WT mice required euthanasia at 15-19 weeks postradiation because of respiratory distress, whereas no XRT-TG mouse developed distress. All assessments of lung damage at 15-20 weeks postradiation were higher for XRT-WT mice compared with the XRT-TG mice, including breathing frequency (380 vs. 286 bpm, p <or= 0.0004), right lung weight (228 vs. 113 mg, p <or= 0.06), macrophage count (48 vs. 5 per 40x field, p <or= 0.06), and percent activated TGF-beta1 (37 vs. 11%, p <or= 0.06). Semiquantitative measures, including fibrosis and collagen deposition, were also higher for XRT-WT mice, with an exact Fisher p value of <or=0.03 for both variables. In addition, malondialic acid was elevated in XRT-WT mice 15-20 weeks after radiation delivery, and levels were lower in the XRT-TG mice (624 vs. 323 pmol/mg protein, p <or= 0.06). CONCLUSIONS After radiation therapy, oxidative stress is present at 15-20 weeks after initial exposure, which correlates with the delayed clinical onset of radiation-induced lung damage. Overexpression of EC-SOD in transgenic mice appears to confer protection against this radiation-induced lung injury, with a corresponding decrease in oxidative stress. EC-SOD may be a potential therapeutic agent for radioprotection in the treatment of thoracic malignancies. Further investigation is needed to confirm and expand on the current results.


International Journal of Radiation Oncology Biology Physics | 2008

Small Molecular Inhibitor of Transforming Growth Factor-β Protects Against Development of Radiation-Induced Lung Injury

Mitchell S. Anscher; B. Thrasher; Larisa Zgonjanin; Zahid N. Rabbani; Michael J. Corbley; Kai Fu; Lihong Sun; Wen-Cherng Lee; Leona E. Ling; Zeljko Vujaskovic

PURPOSE To determine whether an anti-transforming growth factor-beta (TGF-beta) type 1 receptor inhibitor (SM16) can prevent radiation-induced lung injury. METHODS AND MATERIALS One fraction of 28 Gy or sham radiotherapy (RT) was administered to the right hemithorax of Sprague-Dawley rats. SM16 was administered in the rat chow (0.07 g/kg or 0.15 g/kg) beginning 7 days before RT. The rats were divided into eight groups: group 1, control chow; group 2, SM16, 0.07 g/kg; group 3, SM16, 0.15 g/kg; group 4, RT plus control chow; group 5, RT plus SM16, 0.07 g/kg; group 6, RT plus SM16, 0.15 g/kg; group 7, RT plus 3 weeks of SM16 0.07 g/kg followed by control chow; and group 8, RT plus 3 weeks of SM16 0.15 g/kg followed by control chow. The breathing frequencies, presence of inflammation/fibrosis, activation of macrophages, and expression/activation of TGF-beta were assessed. RESULTS The breathing frequencies in the RT plus SM16 0.15 g/kg were significantly lower than the RT plus control chow from Weeks 10-22 (p <0.05). The breathing frequencies in the RT plus SM16 0.07 g/kg group were significantly lower only at Weeks 10, 14, and 20. At 26 weeks after RT, the RT plus SM16 0.15 g/kg group experienced a significant decrease in lung fibrosis (p = 0.016), inflammatory response (p = 0.006), and TGF-beta1 activity (p = 0.011). No significant reduction was found in these measures of lung injury in the group that received SM16 0.7 g/kg nor for the short-course (3 weeks) SM16 at either dose level. CONCLUSION SM16 at a dose of 0.15 g/kg reduced functional lung damage, morphologic changes, inflammatory response, and activation of TGF-beta at 26 weeks after RT. The data suggest a dose response and also suggest the superiority of long-term vs. short-term dosing.


Cancer Research | 2006

Tumor Necrosis Factor-{alpha} Is a Potent Endogenous Mutagen that Promotes Cellular Transformation

Bin Yan; Huili Wang; Zahid N. Rabbani; Yulin Zhao; Wenrong Li; Yuqing Yuan; Fang Li; Mark W. Dewhirst; Chuan-Yuan Li

Tumor necrosis factor-alpha (TNF-alpha) is an important inflammation cytokine without known direct effect on DNA. In this study, we found that TNF-alpha can cause DNA damages through reactive oxygen species. The mutagenic effect of TNF-alpha is comparable with that of ionizing radiation. TNF-alpha treatment in cultured cells resulted in increased gene mutations, gene amplification, micronuclei formation, and chromosomal instability. Antioxidants significantly reduced TNF-alpha-induced genetic damage. TNF-alpha also induced oxidative stress and nucleotide damages in mouse tissues in vivo. Moreover, TNF-alpha treatment alone led to increased malignant transformation of mouse embryo fibroblasts, which could be partially suppressed by antioxidants. As TNF-alpha is involved in chronic inflammatory diseases, such as chronic hepatitis, ulcerative colitis, and chronic skin ulcers, and these diseases predispose the patients to cancer development, our results suggest a novel pathway through which TNF-alpha promotes cancer development through induction of gene mutations, in addition to the previously reported mechanisms, in which nuclear factor-kappaB activation was implicated.


PLOS ONE | 2007

Erythropoietin Blockade Inhibits the Induction of Tumor Angiogenesis and Progression

Matthew E. Hardee; Yiting Cao; Ping Fu; Xiaohong Jiang; Yulin Zhao; Zahid N. Rabbani; Zeljko Vujaskovic; Mark W. Dewhirst; Murat O. Arcasoy

Background The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. Methodology/Principal Findings Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-invasive, serial visualization and real-time assessment of tumor cells and neovascularization simultaneously using intravital microscopy and computerized image analysis during the initial stages of tumorigenesis. Erythropoietin or its antagonist proteins were co-injected with tumor cells into window chambers. In vivo growth of cells engineered to stably express a constitutively active erythropoietin receptor EPOR-R129C or the erythropoietin antagonist R103A-EPO were analyzed in window chambers and in the mammary fat pads of athymic nude mice. Co-injection of erythropoietin with tumor cells or expression of EPOR-R129C in tumor cells significantly stimulated tumor neovascularization and growth in window chambers. Co-injection of erythropoietin antagonist proteins (soluble EPOR or anti-EPO antibody) with tumor cells or stable expression of antagonist R103A-EPO protein secreted from tumor cells inhibited angiogenesis and impaired tumor growth. In orthotopic tumor xenograft studies, EPOR-R129C expression significantly promoted tumor growth associated with increased expression of Ki67 proliferation antigen, enhanced microvessel density, decreased tumor hypoxia, and increased phosphorylation of extracellular-regulated kinases ERK1/2. R103A-EPO antagonist expression in mammary carcinoma cells was associated with near-complete disruption of primary tumor formation in the mammary fat pad. Conclusions/Significance These data indicate that erythropoietin is an important angiogenic factor that regulates the induction of tumor cell-induced neovascularization and growth during the initial stages of tumorigenesis. The suppression of tumor angiogenesis and progression by erythropoietin blockade suggests that erythropoietin may constitute a potential target for the therapeutic modulation of angiogenesis in cancer.


BMC Cancer | 2005

Overexpression of extracellular superoxide dismutase reduces acute radiation induced lung toxicity

Zahid N. Rabbani; Mitchell S. Anscher; Rodney J. Folz; Emerald Archer; Hong Huang; Liguang Chen; Maria L. Golson; T. Samulski; Mark W. Dewhirst; Zeljko Vujaskovic

BackgroundAcute RT-induced damage to the lung is characterized by inflammatory changes, which proceed to the development of fibrotic lesions in the late phase of injury. Ultimately, complete structural ablation will ensue, if the source of inflammatory / fibrogenic mediators and oxidative stress is not removed or attenuated. Therefore, the purpose of this study is to determine whether overexpression of extracellular superoxide dismutase (EC-SOD) in mice ameliorates acute radiation induced injury by inhibiting activation of TGFβ1 and downregulating the Smad 3 arm of its signal transduction pathway.MethodsWhole thorax radiation (single dose, 15 Gy) was delivered to EC-SOD overexpressing transgenic (XRT-TG) and wild-type (XRT-WT) animals. Mice were sacrificed at 1 day, 1 week, 3, 6, 10 and 14 weeks. Breathing rates, right lung weights, total/differential leukocyte count, activated TGFβ1 and components of its signal transduction pathway (Smad 3 and p-Smad 2/3) were assessed to determine lung injury.ResultsIrradiated wild-type (XRT-WT) animals exhibited time dependent increase in breathing rates and right lung weights, whereas these parameters were significantly less increased (p < 0.05) at 3, 6, 10 and 14 weeks in irradiated transgenic (XRT-TG) mice. An inflammatory response characterized predominantly by macrophage infiltration was pronounced in XRT-WT mice. This acute inflammation was significantly attenuated (p < 0.05) in XRT-TG animals at 1, 3, 6 and 14 weeks. Expression of activated TGFβ1 and components of its signal transduction pathway were significantly reduced (p < 0.05) at later time-points in XRT-TG vs. XRT-WT.ConclusionThis study shows that overexpression of EC-SOD confers protection against RT-induced acute lung injury. EC-SOD appears to work, in part, via an attenuation of the macrophage response and also decreases TGFβ1 activation with a subsequent downregulation of the profibrotic TGFβ pathway.

Collaboration


Dive into the Zahid N. Rabbani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitchell S. Anscher

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge