Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zeynep Kalender Atak is active.

Publication


Featured researches published by Zeynep Kalender Atak.


Nature Genetics | 2013

Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia

Kim De Keersmaecker; Zeynep Kalender Atak; Ning Li; Carmen Vicente; Stephanie Patchett; Tiziana Girardi; Valentina Gianfelici; Ellen Geerdens; Emmanuelle Clappier; Michaël Porcu; Idoya Lahortiga; Rossella Luca; Jiekun Yan; Gert Hulselmans; Hilde Vranckx; Roel Vandepoel; Bram Sweron; Kris Jacobs; Nicole Mentens; Iwona Wlodarska; Barbara Cauwelier; Jacqueline Cloos; Jean Soulier; Anne Uyttebroeck; Claudia Bagni; Bassem A. Hassan; Peter Vandenberghe; Arlen W. Johnson; Stein Aerts; Jan Cools

T-cell acute lymphoblastic leukemia (T-ALL) is caused by the cooperation of multiple oncogenic lesions. We used exome sequencing on 67 T-ALLs to gain insight into the mutational spectrum in these leukemias. We detected protein-altering mutations in 508 genes, with an average of 8.2 mutations in pediatric and 21.0 mutations in adult T-ALL. Using stringent filtering, we predict seven new oncogenic driver genes in T-ALL. We identify CNOT3 as a tumor suppressor mutated in 7 of 89 (7.9%) adult T-ALLs, and its knockdown causes tumors in a sensitized Drosophila melanogaster model. In addition, we identify mutations affecting the ribosomal proteins RPL5 and RPL10 in 12 of 122 (9.8%) pediatric T-ALLs, with recurrent alterations of Arg98 in RPL10. Yeast and lymphoid cells expressing the RPL10 Arg98Ser mutant showed a ribosome biogenesis defect. Our data provide insights into the mutational landscape of pediatric versus adult T-ALL and identify the ribosome as a potential oncogenic factor.


PLOS Computational Biology | 2014

iRegulon: from a gene list to a gene regulatory network using large motif and track collections.

Rekin's Janky; Annelien Verfaillie; Hana Imrichova; Bram Van de Sande; Laura Standaert; Valerie Christiaens; Gert Hulselmans; Koen Herten; Marina Naval Sanchez; Delphine Potier; Dmitry Svetlichnyy; Zeynep Kalender Atak; Mark Fiers; Jean-Christophe Marine; Stein Aerts

Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes. iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org.


Nature Communications | 2015

Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state

Annelien Verfaillie; Hana Imrichova; Zeynep Kalender Atak; Michael Dewaele; Florian Rambow; Gert Hulselmans; Christiaens; Dmitry Svetlichnyy; Flavie Luciani; Van den Mooter L; Claerhout S; Mark Fiers; Fabrice Journé; Ghanem Elias Ghanem; Carl Herrmann; Georg Halder; Jean-Christophe Marine; Stein Aerts

Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance.


PLOS Genetics | 2013

Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia

Zeynep Kalender Atak; Valentina Gianfelici; Gert Hulselmans; Kim De Keersmaecker; Arun George Devasia; Ellen Geerdens; Nicole Mentens; Sabina Chiaretti; Kaat Durinck; Anne Uyttebroeck; Peter Vandenberghe; Iwona Wlodarska; Jacqueline Cloos; Robin Foà; Franki Speleman; Jan Cools; Stein Aerts

RNA-seq is a promising technology to re-sequence protein coding genes for the identification of single nucleotide variants (SNV), while simultaneously obtaining information on structural variations and gene expression perturbations. We asked whether RNA-seq is suitable for the detection of driver mutations in T-cell acute lymphoblastic leukemia (T-ALL). These leukemias are caused by a combination of gene fusions, over-expression of transcription factors and cooperative point mutations in oncogenes and tumor suppressor genes. We analyzed 31 T-ALL patient samples and 18 T-ALL cell lines by high-coverage paired-end RNA-seq. First, we optimized the detection of SNVs in RNA-seq data by comparing the results with exome re-sequencing data. We identified known driver genes with recurrent protein altering variations, as well as several new candidates including H3F3A, PTK2B, and STAT5B. Next, we determined accurate gene expression levels from the RNA-seq data through normalizations and batch effect removal, and used these to classify patients into T-ALL subtypes. Finally, we detected gene fusions, of which several can explain the over-expression of key driver genes such as TLX1, PLAG1, LMO1, or NKX2-1; and others result in novel fusion transcripts encoding activated kinases (SSBP2-FER and TPM3-JAK2) or involving MLLT10. In conclusion, we present novel analysis pipelines for variant calling, variant filtering, and expression normalization on RNA-seq data, and successfully applied these for the detection of translocations, point mutations, INDELs, exon-skipping events, and expression perturbations in T-ALL.


PLOS ONE | 2012

High Accuracy Mutation Detection in Leukemia on a Selected Panel of Cancer Genes

Zeynep Kalender Atak; Kim De Keersmaecker; Valentina Gianfelici; Ellen Geerdens; Roel Vandepoel; Daphnie Pauwels; Michaël Porcu; Idoya Lahortiga; Vanessa Brys; Willy G. Dirks; Hilmar Quentmeier; Jacqueline Cloos; Harry Cuppens; Anne Uyttebroeck; Peter Vandenberghe; Jan Cools; Stein Aerts

With the advent of whole-genome and whole-exome sequencing, high-quality catalogs of recurrently mutated cancer genes are becoming available for many cancer types. Increasing access to sequencing technology, including bench-top sequencers, provide the opportunity to re-sequence a limited set of cancer genes across a patient cohort with limited processing time. Here, we re-sequenced a set of cancer genes in T-cell acute lymphoblastic leukemia (T-ALL) using Nimblegen sequence capture coupled with Roche/454 technology. First, we investigated how a maximal sensitivity and specificity of mutation detection can be achieved through a benchmark study. We tested nine combinations of different mapping and variant-calling methods, varied the variant calling parameters, and compared the predicted mutations with a large independent validation set obtained by capillary re-sequencing. We found that the combination of two mapping algorithms, namely BWA-SW and SSAHA2, coupled with the variant calling algorithm Atlas-SNP2 yields the highest sensitivity (95%) and the highest specificity (93%). Next, we applied this analysis pipeline to identify mutations in a set of 58 cancer genes, in a panel of 18 T-ALL cell lines and 15 T-ALL patient samples. We confirmed mutations in known T-ALL drivers, including PHF6, NF1, FBXW7, NOTCH1, KRAS, NRAS, PIK3CA, and PTEN. Interestingly, we also found mutations in several cancer genes that had not been linked to T-ALL before, including JAK3. Finally, we re-sequenced a small set of 39 candidate genes and identified recurrent mutations in TET1, SPRY3 and SPRY4. In conclusion, we established an optimized analysis pipeline for Roche/454 data that can be applied to accurately detect gene mutations in cancer, which led to the identification of several new candidate T-ALL driver mutations.


PLOS Biology | 2013

The Drosophila homologue of the amyloid precursor protein is a conserved modulator of Wnt PCP signaling

Alessia Soldano; Zeynep Okray; Pavlína Janovská; Kateřina Tmejová; Elodie Reynaud; Annelies Claeys; Jiekun Yan; Zeynep Kalender Atak; Bart De Strooper; Jean-Maurice Dura; Vítězslav Bryja; Bassem A. Hassan

Wnt Planar Cell Polarity (PCP) signaling is a universal regulator of polarity in epithelial cells, but it regulates axon outgrowth in neurons, suggesting the existence of axonal modulators of Wnt-PCP activity. The Amyloid precursor proteins (APPs) are intensely investigated because of their link to Alzheimers disease (AD). APPs in vivo function in the brain and the mechanisms underlying it remain unclear and controversial. Drosophila possesses a single APP homologue called APP Like, or APPL. APPL is expressed in all neurons throughout development, but has no established function in neuronal development. We therefore investigated the role of Drosophila APPL during brain development. We find that APPL is involved in the development of the Mushroom Body αβ neurons and, in particular, is required cell-autonomously for the β-axons and non-cell autonomously for the α-axons growth. Moreover, we find that APPL is a modulator of the Wnt-PCP pathway required for axonal outgrowth, but not cell polarity. Molecularly, both human APP and fly APPL form complexes with PCP receptors, thus suggesting that APPs are part of the membrane protein complex upstream of PCP signaling. Moreover, we show that APPL regulates PCP pathway activation by modulating the phosphorylation of the Wnt adaptor protein Dishevelled (Dsh) by Abelson kinase (Abl). Taken together our data suggest that APPL is the first example of a modulator of the Wnt-PCP pathway specifically required for axon outgrowth.


Haematologica | 2011

Mutation analysis of the tyrosine phosphatase PTPN2 in Hodgkin's lymphoma and T-cell non-Hodgkin's lymphoma.

Maria Kleppe; Thomas Tousseyn; Eva Geissinger; Zeynep Kalender Atak; Stein Aerts; Andreas Rosenwald; Iwona Wlodarska; Jan Cools

We recently reported deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Functional analyses confirmed that PTPN2 acts as classical tumor suppressor repressing the proliferation of T cells, in part through inhibition of JAK/STAT signaling. We investigated the expression of PTPN2 in leukemia as well as lymphoma cell lines. We identified bi-allelic inactivation of PTPN2 in the Hodgkin’s lymphoma cell line SUP-HD1 which was associated with activation of the JAK/STAT pathway. Subsequent sequence analysis of Hodgkin’s lymphoma and T-cell non-Hodgkin’s lymphoma identified bi-allelic inactivation of PTPN2 in 2 out of 39 cases of peripheral T-cell lymphoma not otherwise specified, but not in Hodgkin’s lymphoma. These results, together with our own data on T-cell acute lymphoblastic leukemia, demonstrate that PTPN2 is a tumor suppressor gene in T-cell malignancies.


Nucleic Acids Research | 2015

i-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in human, mouse and fly

Hana Imrichova; Gert Hulselmans; Zeynep Kalender Atak; Delphine Potier; Stein Aerts

i-cisTarget is a web tool to predict regulators of a set of genomic regions, such as ChIP-seq peaks or co-regulated/similar enhancers. i-cisTarget can also be used to identify upstream regulators and their target enhancers starting from a set of co-expressed genes. Whereas the original version of i-cisTarget was focused on Drosophila data, the 2015 update also provides support for human and mouse data. i-cisTarget detects transcription factor motifs (position weight matrices) and experimental data tracks (e.g. from ENCODE, Roadmap Epigenomics) that are enriched in the input set of regions. As experimental data tracks we include transcription factor ChIP-seq data, histone modification ChIP-seq data and open chromatin data. The underlying processing method is based on a ranking-and-recovery procedure, allowing accurate determination of enrichment across heterogeneous datasets, while also discriminating direct from indirect target regions through a ‘leading edge’ analysis. We illustrate i-cisTarget on various Ewing sarcoma datasets to identify EWS-FLI1 targets starting from ChIP-seq, differential ATAC-seq, differential H3K27ac and differential gene expression data. Use of i-cisTarget is free and open to all, and there is no login requirement. Address: http://gbiomed.kuleuven.be/apps/lcb/i-cisTarget.


Nature Methods | 2017

SCENIC: single-cell regulatory network inference and clustering

Sara Aibar; Thomas Moerman; Vân Anh Huynh-Thu; Hana Imrichova; Gert Hulselmans; Florian Rambow; Jean-Christophe Marine; Pierre Geurts; Jan Aerts; Joost van den Oord; Zeynep Kalender Atak; Jasper Wouters; Stein Aerts

We present SCENIC, a computational method for simultaneous gene regulatory network reconstruction and cell-state identification from single-cell RNA-seq data (http://scenic.aertslab.org). On a compendium of single-cell data from tumors and brain, we demonstrate that cis-regulatory analysis can be exploited to guide the identification of transcription factors and cell states. SCENIC provides critical biological insights into the mechanisms driving cellular heterogeneity.


Genome Research | 2016

Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic

Annelien Verfaillie; Dmitry Svetlichnyy; Hana Imrichova; Kristofer Davie; Mark Fiers; Zeynep Kalender Atak; Gert Hulselmans; Valerie Christiaens; Stein Aerts

Transcription factors regulate their target genes by binding to regulatory regions in the genome. Although the binding preferences of TP53 are known, it remains unclear what distinguishes functional enhancers from nonfunctional binding. In addition, the genome is scattered with recognition sequences that remain unoccupied. Using two complementary techniques of multiplex enhancer-reporter assays, we discovered that functional enhancers could be discriminated from nonfunctional binding events by the occurrence of a single TP53 canonical motif. By combining machine learning with a meta-analysis of TP53 ChIP-seq data sets, we identified a core set of more than 1000 responsive enhancers in the human genome. This TP53 cistrome is invariably used between cell types and experimental conditions, whereas differences among experiments can be attributed to indirect nonfunctional binding events. Our data suggest that TP53 enhancers represent a class of unsophisticated cell-autonomous enhancers containing a single TP53 binding site, distinct from complex developmental enhancers that integrate signals from multiple transcription factors.

Collaboration


Dive into the Zeynep Kalender Atak's collaboration.

Top Co-Authors

Avatar

Stein Aerts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Gert Hulselmans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ellen Geerdens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Hana Imrichova

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Anne Uyttebroeck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Peter Vandenberghe

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Jan Cools

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jacqueline Cloos

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dmitry Svetlichnyy

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Mark Fiers

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge