Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhan-Peng Huang is active.

Publication


Featured researches published by Zhan-Peng Huang.


Circulation Research | 2013

mir-17-92 Cluster is Required for and Sufficient to Induce Cardiomyocyte Proliferation in Postnatal and Adult Hearts

Jinghai Chen; Zhan-Peng Huang; Hee Young Seok; Jian Ding; Masaharu Kataoka; Zheng Zhang; Xiaoyun Hu; Gang Wang; Zhiqiang Lin; Si Wang; Willam T. Pu; Ronglih Liao; Da-Zhi Wang

Rationale: Cardiomyocytes in adult mammalian hearts are terminally differentiated cells that have exited from the cell cycle and lost most of their proliferative capacity. Death of mature cardiomyocytes in pathological cardiac conditions and the lack of regeneration capacity of adult hearts are primary causes of heart failure and mortality. However, how cardiomyocyte proliferation in postnatal and adult hearts becomes suppressed remains largely unknown. The miR-17–92 cluster was initially identified as a human oncogene that promotes cell proliferation. However, its role in the heart remains unknown. Objective: To test the hypothesis that miR-17–92 participates in the regulation of cardiomyocyte proliferation in postnatal and adult hearts. Methods and Results: We deleted miR-17–92 cluster from embryonic and postnatal mouse hearts and demonstrated that miR-17–92 is required for cardiomyocyte proliferation in the heart. Transgenic overexpression of miR-17–92 in cardiomyocytes is sufficient to induce cardiomyocyte proliferation in embryonic, postnatal, and adult hearts. Moreover, overexpression of miR-17–92 in adult cardiomyocytes protects the heart from myocardial infarction-induced injury. Similarly, we found that members of miR-17–92 cluster, miR-19 in particular, are required for and sufficient to induce cardiomyocyte proliferation in vitro. We identified phosphatase and tensin homolog, a tumor suppressor, as an miR-17–92 target to mediate the function of miR-17–92 in cardiomyocyte proliferation. Conclusions: Our studies therefore identify miR-17–92 as a critical regulator of cardiomyocyte proliferation, and suggest this cluster of microRNAs could become therapeutic targets for cardiac repair and heart regeneration.


Circulation | 2014

LincRNA-p21 Regulates Neointima Formation, Vascular Smooth Muscle Cell Proliferation, Apoptosis and Atherosclerosis by Enhancing p53 Activity

Gengze Wu; Jin Cai; Yu Han; Jinghai Chen; Zhan-Peng Huang; Caiyu Chen; Yue Cai; Hefei Huang; Yujia Yang; Yukai Liu; Zaicheng Xu; Duofen He; Xiaoqun Zhang; Xiaoyun Hu; Luca Pinello; Dan Zhong; Fengtian He; Guo-Cheng Yuan; Da-Zhi Wang; Chunyu Zeng

Background— Long noncoding RNAs (lncRNAs) have recently been implicated in many biological processes and diseases. Atherosclerosis is a major risk factor for cardiovascular disease. However, the functional role of lncRNAs in atherosclerosis is largely unknown. Methods and Results— We identified lincRNA-p21 as a key regulator of cell proliferation and apoptosis during atherosclerosis. The expression of lincRNA-p21 was dramatically downregulated in atherosclerotic plaques of ApoE−/− mice, an animal model for atherosclerosis. Through loss- and gain-of-function approaches, we showed that lincRNA-p21 represses cell proliferation and induces apoptosis in vascular smooth muscle cells and mouse mononuclear macrophage cells in vitro. Moreover, we found that inhibition of lincRNA-p21 results in neointimal hyperplasia in vivo in a carotid artery injury model. Genome-wide analysis revealed that lincRNA-p21 inhibition dysregulated many p53 targets. Furthermore, lincRNA-p21, a transcriptional target of p53, feeds back to enhance p53 transcriptional activity, at least in part, via binding to mouse double minute 2 (MDM2), an E3 ubiquitin-protein ligase. The association of lincRNA-p21 and MDM2 releases MDM2 repression of p53, enabling p53 to interact with p300 and to bind to the promoters/enhancers of its target genes. Finally, we show that lincRNA-p21 expression is decreased in patients with coronary artery disease. Conclusions— Our studies identify lincRNA-p21 as a novel regulator of cell proliferation and apoptosis and suggest that this lncRNA could serve as a therapeutic target to treat atherosclerosis and related cardiovascular disorders.


Circulation Research | 2013

MicroRNA-22 Regulates Cardiac Hypertrophy and Remodeling in Response to Stress

Zhan-Peng Huang; Jinghai Chen; Hee Young Seok; Zheng Zhang; Masaharu Kataoka; Xiaoyun Hu; Da-Zhi Wang

Rationale: The adult heart is composed primarily of terminally differentiated, mature cardiomyocytes that express signature genes related to contraction. In response to mechanical or pathological stress, the heart undergoes hypertrophic growth, a process defined as an increase in cardiomyocyte cell size without an increase in cell number. However, the molecular mechanism of cardiac hypertrophy is not fully understood. Objective: To identify and characterize microRNAs that regulate cardiac hypertrophy and remodeling. Methods and Results: Screening for muscle-expressed microRNAs that are dynamically regulated during muscle differentiation and hypertrophy identified microRNA-22 (miR-22) as a cardiac- and skeletal muscle–enriched microRNA that is upregulated during myocyte differentiation and cardiomyocyte hypertrophy. Overexpression of miR-22 was sufficient to induce cardiomyocyte hypertrophy. We generated mouse models with global and cardiac-specific miR-22 deletion, and we found that cardiac miR-22 was essential for hypertrophic cardiac growth in response to stress. miR-22–null hearts blunted cardiac hypertrophy and cardiac remodeling in response to 2 independent stressors: isoproterenol infusion and an activated calcineurin transgene. Loss of miR-22 sensitized mice to the development of dilated cardiomyopathy under stress conditions. We identified Sirt1 and Hdac4 as miR-22 targets in the heart. Conclusions: Our studies uncover miR-22 as a critical regulator of cardiomyocyte hypertrophy and cardiac remodeling.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Induction of MicroRNA-1 by Myocardin in Smooth Muscle Cells Inhibits Cell Proliferation

Jie Chen; Hao Yin; Yulan Jiang; Sarvan Kumar Radhakrishnan; Zhan-Peng Huang; Jingjing Li; Zhan Shi; Elisabeth P.C. Kilsdonk; Yu Gui; Da-Zhi Wang; Xi-Long Zheng

Objective—Myocardin is a cardiac- and smooth muscle-specific transcription co-factor that potently activates the expression of downstream target genes. Previously, we demonstrated that overexpression of myocardin inhibited the proliferation of smooth muscle cells (SMCs). Recently, myocardin was reported to induce the expression of microRNA-1 (miR-1) in cardiomyocytes. In this study, we investigated whether myocardin induces miR-1 expression to mediate its inhibitory effects on SMC proliferation. Methods and Results—Using tetracycline-regulated expression (T-REx) inducible system expressing myocardin in human vascular SMCs, we found that overexpression of myocardin resulted in significant induction of miR-1 expression and inhibition of SMC proliferation, which was reversed by miR-1 inhibitors. Consistently, introduction of miR-1 into SMCs inhibited their proliferation. We isolated spindle-shaped and epithelioid human SMCs and demonstrated that spindle-shaped SMCs were more differentiated and less proliferative. Correspondingly, spindle-shaped SMCs had significantly higher expression levels of both myocardin and miR-1 than epithelioid SMCs. We identified Pim-1, a serine/threonine kinase, as a target gene for miR-1 in SMCs. Western blot and luciferase reporter assays further confirmed that miR-1 targeted Pim-1 directly. Furthermore, neointimal lesions of mouse carotid arteries displayed downregulation of myocardin and miR-1 with upregulation of Pim-1. Conclusion—Our data demonstrate that miR-1 participates in myocardin-dependent of SMC proliferation inhibition.


Circulation Research | 2014

Loss of microRNA-155 Protects the Heart from Pathological Cardiac Hypertrophy

Heeyoung Y Seok; Jinghai Chen; Masaharu Kataoka; Zhan-Peng Huang; Jian Ding; Jinglu Yan; Xiaoyun Hu; Da-Zhi Wang

Rationale: In response to mechanical and pathological stress, adult mammalian hearts often undergo mal-remodeling, a process commonly characterized as pathological hypertrophy, which is associated with upregulation of fetal genes, increased fibrosis, and reduction of cardiac dysfunction. The molecular pathways that regulate this process are not fully understood. Objective: To explore the function of microRNA-155 (miR-155) in cardiac hypertrophy and remodeling. Methods and Results: Our previous work identified miR-155 as a critical microRNA that repressed the expression and function of the myocyte enhancer factor 2A. In this study, we found that miR-155 is expressed in cardiomyocytes and that its expression is reduced in pressure overload–induced hypertrophic hearts. In mouse models of cardiac hypertrophy, miR-155 null hearts suppressed cardiac hypertrophy and cardiac remodeling in response to 2 independent pathological stressors, transverse aortic restriction and an activated calcineurin transgene. Most importantly, loss of miR-155 prevents the progress of heart failure and substantially extends the survival of calcineurin transgenic mice. The function of miR-155 in hypertrophy is confirmed in isolated cardiomyocytes. We identified jumonji, AT rich interactive domain 2 (Jarid2) as an miR-155 target in the heart. miR-155 directly represses Jarid2, whose expression is increased in miR-155 null hearts. Inhibition of endogenous Jarid2 partially rescues the effect of miR-155 loss in isolated cardiomyocytes. Conclusions: Our studies uncover miR-155 as an inducer of pathological cardiomyocyte hypertrophy and suggest that inhibition of endogenous miR-155 might have clinical potential to suppress cardiac hypertrophy and heart failure.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Loss of MicroRNAs in Neural Crest Leads to Cardiovascular Syndromes Resembling Human Congenital Heart Defects

Zhan-Peng Huang; Jian-Fu Chen; Jenna N. Regan; Colin T. Maguire; Ru Hang Tang; Xiu Rong Dong; Mark W. Majesky; Da-Zhi Wang

Objective—Congenital heart defects represent the most common human birth defects. Even though the genetic cause of these syndromes has been linked to candidate genes, the underlying molecular mechanisms are still largely unknown. Disturbance of neural crest cell (NCC) migration into the derivatives of the pharyngeal arches and pouches can account for many of the developmental defects. The goal of this study was to investigate the function of microRNA (miRNA) in NCCs and the cardiovascular system. Methods and Results—We deleted Dicer from the NCC lineage and showed that Dicer conditional mutants exhibit severe defects in multiple craniofacial and cardiovascular structures, many of which are observed in human neuro-craniofacial-cardiac syndrome patients. We found that cranial NCCs require Dicer for their survival and that deletion of Dicer led to massive cell death and complete loss of NCC-derived craniofacial structures. In contrast, Dicer and miRNAs were not essential for the survival of cardiac NCCs. However, the migration and patterning of these cells were impaired in Dicer knockout mice, resulting in a spectrum of cardiovascular abnormalities, including type B interrupted aortic arch, double-outlet right ventricle, and ventricular septal defect. We showed that Dicer loss of function was, at least in part, mediated by miRNA-21 (miR-21) and miRNA-181a (miR-181a), which in turn repressed the protein level of Sprouty 2, an inhibitor of Erk1/2 signaling. Conclusion—Our results uncovered a central role for Dicer and miRNAs in NCC survival, migration, and patterning in craniofacial and cardiovascular development which, when mutated, lead to congenital neuro-craniofacial-cardiac defects.


Journal of Cell Biology | 2011

The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly.

Yazhong Tao; Ronald L. Neppl; Zhan-Peng Huang; Jian-Fu Chen; Ruhang Tang; Ru Cao; Yi Zhang; Suk-Won Jin; Da-Zhi Wang

Set7 associates with the MyoD transcription factor to enhance expression of genes required for muscle differentiation.


Journal of Cardiovascular Translational Research | 2010

MicroRNAs in cardiac remodeling and disease.

Zhan-Peng Huang; Ronald L. Neppl; Da-Zhi Wang

MicroRNAs (miRNAs) are a large sub-group of small non-coding RNAs, which have been demonstrated to post-transcriptionally regulate the expression of protein-coding genes in a wide-range biological process. miRNAs have been shown to be essential for normal heart development and cardiac function. Recent data suggest that miRNAs are involved in the etiology of cardiac disease and the remodeling of hearts, including cardiac hypertrophy, myocardial infarction, and cardiac arrhythmias. In this review, we focus on the recent progress in the understanding of the function of miRNAs in cardiac remodeling and disease. We will also discuss the diagnostic and therapeutic potential of miRNAs in heart disease.


Trends in Cardiovascular Medicine | 2014

miR-22 in cardiac remodeling and disease

Zhan-Peng Huang; Da-Zhi Wang

Regulation of gene expression during cardiac development and remodeling is very complicated, involving epigenetic, transcriptional, post-transcriptional, and translational regulation. Our understanding of the molecular mechanisms underlying cardiac remodeling is still far from complete. MicroRNAs are a class of small non-coding RNAs that have been shown to play critical roles in gene regulation in cardiovascular biology and disease. microRNA-22 (miR-22) is an evolutionally conserved miRNA that is highly expressed in the heart. Recent studies uncovered miR-22 as an important regulator for cardiac remodeling. miR-22 modulates the expression and function of genes involved in hypertrophic response, sarcomere reorganization, and metabolic program shift during cardiac remodeling. In this review, we will focus on the recent findings of miR-22 in cardiac remodeling and the therapeutic potential of this miRNA in the treatment of related defects resulting from adverse cardiac remodeling.


Cardiovascular Research | 2016

Long non-coding RNAs link extracellular matrix gene expression to ischemic cardiomyopathy

Zhan-Peng Huang; Yan Ding; Jinghai Chen; Gengze Wu; Masaharu Kataoka; Yongwu Hu; Jian-Hua Yang; Jianming Liu; Stavros G. Drakos; Craig H. Selzman; Jan Kyselovic; Liang Hu Qu; Cristobal G. dos Remedios; William T. Pu; Da-Zhi Wang

Aims Ischemic cardiomyopathy (ICM) resulting from myocardial infarction is a major cause of heart failure (HF). Recently, thousands of long non-coding RNAs (lncRNAs) have been discovered and implicated in a variety of biological processes. However, the role of most lncRNAs in HF remains largely unknown. The aim of this study is to test the hypothesis that the expression and function of lncRNAs are differentially regulated in diseased hearts. Methods and results In this study, we performed RNA deep sequencing of protein-coding and non-coding RNAs from cardiac samples of patients with ICM ( n  = 15) and controls ( n  = 15). Genome-wide transcriptome analysis confirmed that many protein-coding genes previously known to be involved in HF were altered in ICM hearts. Among the 145 differentially expressed lncRNAs identified in ICM hearts, we found a set of 35 lncRNAs that display strong positive expression correlation. Expression correlation coefficient analyses of differentially expressed lncRNAs and protein-coding genes revealed a strong association between lncRNAs and extracellular matrix (ECM) protein-coding genes. We overexpressed or knocked down selected lncRNAs in cardiac fibroblasts and our results suggest that lncRNAs are important regulators of fibrosis and the expression of ECM synthesis genes. Moreover, we show that lncRNAs participate in the TGF-β pathway to modulate the expression of ECM genes and myofibroblast differentiation. Conclusion Our studies demonstrate that the expression of many lncRNAs is dynamically regulated in ICM. lncRNAs regulate the expression and function of ECM and cardiac fibrosis during the development of ICM. Our results further indicate that lncRNAs may represent novel regulators of heart function and cardiac disorders, including ICM.

Collaboration


Dive into the Zhan-Peng Huang's collaboration.

Top Co-Authors

Avatar

Da-Zhi Wang

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyun Hu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gengze Wu

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jianming Liu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

William T. Pu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian-Fu Chen

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge