Zhangxun Wang
Anhui Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhangxun Wang.
Fungal Biology | 2012
Quan Zhou; Zhangxun Wang; Jun Zhang; Huimin Meng; Bo Huang
Metarhizium anisopliae is one of the most common species of entopathogenic fungi. It has economic and social benefits in many countries where used in agriculture as an important biological control agent of insect pests. M. anisopliae can exist as multiple cell types, which suggests that this fungus has a complex way of gene regulation. MicroRNAs (miRNAs) are endogenous small noncoding RNAs. They play a crucial role in the regulation of gene expression and cell function in plants, animals, and in fungi where they were termed miRNA-like RNAs (milRNAs). In this study, we aimed to identify potential milRNAs in M. anisopliae that may regulate the processes of mycelium growth and conidiogenesis (CO). Two small RNA (sRNA) libraries were constructed and submitted to Solexa sequencing. Fifteen milRNAs were identified using deep-sequencing and computational analysis; most of these milRNAs originated from single genes. Database searches revealed that these novel milRNAs had no homologues in other organisms and were, therefore, M. anisopliae-specific. Many of the milRNAs had differential expression profiles for either mycelium growth or CO. The expression of the selected milRNAs was validated by quantitative reverse transcription polymerase chain reaction. Seventy-eight potential target mRNAs for 14 of the milRNAs were identified successfully by computational analysis. These milRNAs may play an important role in the regulation of mycelial growth and conidiation in M. anisopliae. To our knowledge, this study is the first report of milRNA profiles of organisms in the order Hypocreales. This information could be used to study the regulation of genes and their networks in M. anisopliae.
Applied Microbiology and Biotechnology | 2014
Zhangxun Wang; Xiazhi Zhou; Huimin Meng; Yu-Jun Liu; Quan Zhou; Bo Huang
The entomopathogenic fungus Metarhizium anisopliae is widely used for biological control of a variety of insect pests. The effectiveness of the microbial pest control agent, however, is limited by poor thermotolerance. The molecular mechanism underlying the response to heat stress in the conidia of entomopathogenic fungi remains unclear. Here, we conducted high-throughput RNA-Seq to analyze the differential gene expression between control and heat treated conidia of M. anisopliae at the transcriptome level. RNA-Seq analysis generated 6,284,262 and 5,826,934 clean reads in the control and heat treated groups, respectively. A total of 2,722 up-regulated and 788 down-regulated genes, with a cutoff of twofold change, were identified by expression analysis. Among these differentially expressed genes, many were related to metabolic processes, biological regulation, cellular processes and response to stimuli. The majority of genes involved in endocytic pathways, proteosome pathways and regulation of autophagy were up-regulated, while most genes involved in the ribosome pathway were down-regulated. These results suggest that these differentially expressed genes may be involved in the heat stress response in conidia. As expected, significant changes in expression levels of genes encoding heat shock proteins and proteins involved in trehalose accumulation were observed in conditions of heat stress. These results expand our understanding of the molecular mechanisms of the heat stress response of conidia and provide a foundation for future investigations.
Fungal Biology | 2015
Yulong Wang; Zhangxun Wang; Chun Liu; Sibao Wang; Bo Huang
DNA methylation is a basic epigenetic mechanism found in eukaryotes, but its patterns and roles vary significantly among diverse taxa. In fungi, DNA methylation has various effects on diverse biological processes. However, its function in the sexual development of fungi remains unclear. Cordyceps militaris, readily performs sexual reproduction and thus provides a remarkably rich model for understanding epigenetic processes in sexual development. Here, we surveyed the methylome of C. militaris at single-base resolution to assess DNA methylation patterns during sexual development using genomic bisulfite sequencing (BS-Seq). The results showed that approximately 0.4 % of cytosines are methylated, similar to the DNA methylation level (0.39 %) during asexual development. Importantly, we found that DNA methylation in the fungi undergoes global reprogramming during fungal development. Moreover, RNA-Seq analysis indicated that the differentially methylated regions (DMRs) have no correlation with the genes that have roles during fungal sexual development in C. militaris. These results provide a comprehensive characterization of DNA methylation in the sexual development of C. militaris, which will contribute to future investigations of epigenetics in fungi.
Applied Microbiology and Biotechnology | 2017
Yulong Wang; Tiantian Wang; Lintao Qiao; Jianyu Zhu; Jinrui Fan; Tingting Zhang; Zhangxun Wang; Wanzhen Li; Anhui Chen; Bo Huang
DNA methylation is an important epigenetic mark in mammals, plants, and fungi and depends on multiple genetic pathways involving de novo and maintenance DNA methyltransferases (DNMTases). Metarhizium robertsii, a model system for investigating insect-fungus interactions, has been used as an environmentally friendly alternative to chemical insecticides. However, little is known concerning the molecular basis for DNA methylation. Here, we report on the roles of two DNMTases (MrRID and MrDIM-2) by characterizing ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 mutants. The results showed that approximately 71, 10, and 8% of mC sites remained in the ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 strains, respectively, compared with the wild-type (WT) strain. Further analysis showed that MrRID regulates the specificity of DNA methylation and MrDIM-2 is responsible for most DNA methylation, implying an interaction or cooperation between MrRID and MrDIM-2 for DNA methylation. Moreover, the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains showed more defects in radial growth and conidial production compared to the WT. Under ultraviolet (UV) irradiation or heat stress, an obvious reduction in spore viability was observed for all the mutant strains compared to the WT. The spore median lethal times (LT50s) for the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains in the greater wax moth, Galleria mellonella, were decreased by 47.7 and 65.9%, respectively, which showed that MrDIM-2 is required for full fungal virulence. Our data advances the understanding of the function of DNMTase in entomopathogenic fungi, which should contribute to future epigenetic investigations in fungi.
Fungal Biology | 2017
Wanzhen Li; Yulong Wang; Jianyu Zhu; Zhangxun Wang; Guiliang Tang; Bo Huang
Conidia and mycelia are two important developmental stages in the asexual life cycle of entomopathogenic fungus Metarhizium. Despite the crucial role that DNA methylation plays in many biological processes, its role in regulation of gene expression and development in fungi is not yet fully understood. We performed genome-wide analysis of DNA methylation patterns of an M. robertsii strain with single base pair resolution. Specifically, we examined for changes in methylation patterns between the conidia and mycelia stages. The results showed that approximately 0.38 % of cytosines are methylated in conidia, which is lower than the DNA methylation level (0.42 %) in mycelia. We found that DNA methylation undergoes genome-wide reprogramming during fungal development in M. robertsii. 132 differentially methylated regions (DMRs), which were mostly distributed in gene regions, were identified. KEGG analysis revealed that the DMR-associated genes belong to metabolic pathways. Intriguingly, in contrast to most other eukaryotes, promoter activities in M. robertsii seemed differentially modulated by DNA methylation levels. We found that transcription tended to be enhanced in genes with moderate promoter methylation, while gene expression was decreased in genes with high or low promoter methylation.
Applied and Environmental Microbiology | 2017
Huimin Meng; Zhangxun Wang; Yulong Wang; Hong Zhu; Bo Huang
ABSTRACT RNA interference (RNAi) is a gene-silencing mechanism that plays an important role in gene regulation in a number of eukaryotic organisms. Two core components, Dicer and Argonaute, are central in the RNAi machinery. However, the physiological roles of Dicer and Argonaute in the entomopathogenic fungus Metarhizium robertsii have remained unclear. Here, the roles of genes encoding Dicer (M. robertsiidcl1 [Mrdcl1] and Mrdcl2) and Argonaute (Mrago1 and Mrago2) proteins in M. robertsii were investigated. The results showed that the Dicer-like protein MrDCL2 and Argonaute protein MrAGO1 are the major components of the RNAi process occurring in M. robertsii. The Dicer and Argonaute genes were not involved in the regulation of growth and diverse abiotic stress response in M. robertsii under the tested conditions. Moreover, our results showed that the Dicer and Argonaute gene mutants demonstrated reduced abilities to produce conidia, compared to the wild type (WT) and the gene-rescued mutant. In particular, the conidial yields in the Δdcl2 and Δago1 mutants were reduced by 55.8% and 59.3%, respectively, compared with those from the control strains. Subsequently, for the WT and Δdcl2 mutant strains, digital gene expression (DGE) profiling analysis of the stage of mycelium growth and conidiogenesis revealed that modest changes occur in development or metabolism processes, which may explain the reduction in conidiation in the Δdcl2 mutant. In addition, we further applied high-throughput sequencing technology to identify small RNAs (sRNAs) that are differentially expressed in the WT and the Δdcl2 mutant and found that 4 known microRNA-like small RNAs (milRNAs) and 8 novel milRNAs were Mrdcl2 dependent in M. robertsii. IMPORTANCE The identification and characterization of components in RNAi have contributed significantly to our understanding of the mechanism and functions of RNAi in eukaryotes. Here, we found that Dicer and Argonaute genes play an important role in regulating conidiation in M. robertsii. Our study also demonstrates that diverse small RNA pathways exist in M. robertsii. The study provides a theoretical platform for exploration of the functions of Dicer and Argonaute genes involved in RNAi in fungi.
Genetics and Molecular Biology | 2015
Huimin Meng; Zhangxun Wang; Xiangyun Meng; Ling Xie; Bo Huang
Entomopathogenic fungi can produce a series of chitinases, some of which function synergistically with proteases and other hydrolytic enzymes to degrade the insect cuticle. In the present study, the chitinase gene Ifu-chit2 from Isaria fumosorosea was investigated. The Ifu-chit2 gene is 1,435-bp long, interrupted by three short introns, and encodes a predicted protein of 423 amino acids with a 22 residue signal peptide. The predicted Ifu-Chit2 protein is highly homologous to Beauveria bassiana chitinase Bbchit2 and belongs to the glycohydrolase family 18. Ifu-Chit2 was expressed in Escherichia coli to verify chitinase activity, and the recombinant enzyme exhibited activity with a colloidal chitin substrate. Furthermore, the expression profiles of Ifu-chit2 were analyzed at different induction times under in vivo conditions. Quantitative real-time PCR analysis revealed that Ifu-chit2 expression peaked at two days post-induction. The expression of chitinase Ifu-chit2 in vivo suggests that the chitinase may play a role in the early stage of pathogenesis.
Fungal Biology | 2018
Zhangxun Wang; Quan Zhou; Yuandong Li; Lintao Qiao; Qi Pang; Bo Huang
Metarhizium robertsii is widely applied in biological control via conidia application. To clarify the proteomic differences between conidia and mycelia and explore the underlying mechanisms of conidia as a unit responsible for dispersal and environmental stress, we carried out an iTRAQ (isobaric tags for relative and absolute quantitation)-based quantitative proteomic analysis for two developmental stages from M. robertsii. A total of 2052 proteins were detected, and 90 showed differential protein abundance between the conidia and mycelia. These 90 proteins were primarily associated with stress resistance, amino acid and protein metabolism, and energy metabolism. Further bioinformatics analysis showed that these proteins could be mapped to 52 pathways, five of which were significantly enriched after mapping to KEGG pathways. Interestingly, many proteins involved in the significantly enriched pathway of peroxisome, biosynthesis of secondary metabolites and glyoxylate and dicarboxylate metabolism, including catalase, peroxisomal membrane anchor protein, formate dehydrogenase and isocitrate lyase, were identified with higher abundance in conidia. The results deepened our understanding of the conidia proteome in M. robertsii and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents.
Frontiers in Microbiology | 2018
Rong Zhou; Xiazhi Zhou; Ali Fan; Zhangxun Wang; Bo Huang
The Metarhizium genus of filamentous entomopathogenic fungi plays a pivotal role in regulating insect populations. Metalloproteases (MEPs) are a widely distributed and diverse family of hydrolytic enzymes that are important toxicity factors in the interactions between fungi and their hosts. Herein, we characterized two MEPs, Mrmep1 and Mrmep2, in Metarhizium robertsii using gene deletion. Growth rates of the resulting ΔMrmep1 and ΔMrmep2 mutants decreased by 16.2 and 16.5%, respectively, relative to the wild-type (WT) strain. Both mutants were less sensitive to cell wall-perturbing agents, sodium dodecyl sulfate and Congo red than the WT strain, whereas did not show any obvious changes in fungal sensitivity to ultraviolet B irradiation or heat stress. The conidial yield of ΔMrmep1, ΔMrmep2, and ΔMrmep1ΔMrmep2 mutants decreased by 56.0, 23, and 53%, respectively. Insect bioassay revealed that median lethal time values against Galleria mellonella increased by 25.5% (ΔMrmep1), 19% (ΔMrmep2), and 28.8% (ΔMrmep1ΔMrmep2) compared with the WT strain at a concentration of 1 × 107 conidia mL-1, suggesting attenuated fungal virulence in the ΔMrmep1, ΔMrmep2, and ΔMrmep1ΔMrmep2 strains. During fungal infection, transcription levels of Mrmep1 was 1.6-fold higher than Mrmep2 at 36 h post inoculation. Additionally, transcription levels of gallerimycin gene were 1.2-fold, 2.18-fold, and 2.5-fold higher in insects infected with the ΔMrmep1, ΔMrmep2, or ΔMrmep1ΔMrmep2 mutant than those infected with the WT strain, respectively. Our findings suggest that Mrmep1 and Mrmep2 are differentially contributed to the growth, sporulation, cell wall integrity, and virulence of M. robertsii.
Frontiers in Microbiology | 2018
Wenjing Yang; Hao Wu; Zhangxun Wang; Qian Sun; Lintao Qiao; Bo Huang
The APSES family is a unique family of transcription factors with a basic helix-loop-helix structure (APSES: Asm1p, Phd1p, Sok2p, Efg1p, and StuAp), which are key regulators of cell development and sporulation-related processes. However, the functions of the APSES family of genes in the entomopathogenic fungus Metarhizium robertsii have not been reported. Here, we report the identification and characterization of the MrStuA gene, a member of the APSES family, in M. robertsii. The selected gene was identified as StuA in M. robertsii (MrStuA) because the gene product contains two conserved sequences, an APSES-type DNA-binding domain and a KilA DNA-binding domain, and has the highest homology with the StuA in the C-II clade of the APSES family. We found that the number of conidia produced by the ΔMrStuA strain was 94.45% lower than that in the wild type. Additionally, in the mutant, the conidia displayed an elongated shape, the sporulation was sparse and the phialide were slender. In addition, transcription levels of two central regulators of asexual development, AbaA and WetA, were significantly reduced in the mutant; furthermore, the transcription levels of other sporulation related genes, such as Mpk, Phi, Med, Aco, Flu, and FlbD, also decreased significantly. We also show that the median lethal time (LT50) of the mutant increased by 19%. This increase corresponded with a slower growth rate and an earlier conidia germination time compared to that of the wild strain. However, the resistance of the mutant to chemicals or physical stressors, such as ultraviolet radiation or heat, was not significantly altered. Our results indicate that in M. robertsii, MrStuA may play a crucial role in regulating sporulation as well as virulence, germination, and vegetative growth. This study improves our understanding of the impact of the transcription factor StuA on sporulation processes in filamentous fungi and provides a basis for further studies aimed at improving sporulation efficiency of these fungi for use as a biocontrol agent.