Zhaohong Xie
Shandong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhaohong Xie.
Biochemical and Biophysical Research Communications | 2011
Ping Wang; Zhaohong Xie; Yu-Ji Guo; CuiPing Zhao; Hao Jiang; Yan Song; Zhengyu Zhu; Chao Lai; Shunliang Xu; Jianzhong Bi
Vascular endothelial growth factor (VEGF) was investigated in the present study to see whether it could provide a therapeutic opportunity for the treatment of Alzheimers disease (AD). PDGF-hAPP(V717I) transgenic mice were treated with VEGF or PBS by intraperitoneal injection for three consecutive days. The results showed that VEGF ameliorated the memory impairment of mice, accompanied by CD34(+) cells increasing in peripheral blood, vWF(+) vessels increasing in hippocampus, and CD34(+)/VEGFR2(+), vWF(+)/VEGFR2(+) and BrdU(+)/vWF(+) cells expressing in hippocampus. Furthermore, the level of choline acetyltransferase (ChAT) was considerably enhanced and Aβ deposition was decreased in the brains of mice upon VEGF treatment. These observations suggest that VEGF should be pursued as a novel therapeutic agent for treatment of AD.
PLOS ONE | 2013
Hongna Yang; Hui Yang; Zhaohong Xie; LiFei Wei; Jianzhong Bi
Alzheimer’s disease (AD) is one of most prevalent dementias, which is characterized by the deposition of extracellular amyloid-beta protein (Aβ) and the formation of neurofibrillary tangles within neurons. Although stereotaxic transplantation of mesenchymal stem cells (MSCs) into the hippocampus of AD animal model as immunomodulatory cells has been suggested as a potential therapeutic approach to prevent the progress of AD, it is invasive and difficult for clinical perform. Systemic and central nervous system inflammation play an important role in pathogenesis of AD. T regulatory cells (Tregs) play a crucial role in maintaining systemic immune homeostasis, indicating that transplantation of Tregs could prevent the progress of the inflammation. In this study, we aimed to evaluate whether systemic transplantation of purified autologous Tregs from spleens of AβPPswe/PS1dE9 double-transgenic mice after MSCs from human umbilical cords (UC-MSCs) education in vitro for 3 days could improve the neuropathology and cognition deficits in AβPPswe/PS1dE9 double-transgenic mice. We observed that systemic transplantation of autologous Tregs significantly ameliorate the impaired cognition and reduced the Aβ plaque deposition and the levels of soluble Aβ, accompanied with significantly decreased levels of activated microglia and systemic inflammatory factors. In conclusion, systemic transplantation of autologous Tregs may be an effective and safe intervention to prevent the progress of AD.
Journal of International Medical Research | 2010
H Jiang; Cx Liu; Jb Feng; Ping Wang; Cp Zhao; Zhaohong Xie; Yan Wang; Sl Xu; Chunning Zheng; Jianzhong Bi
Recent evidence suggests that inflammatory mechanisms contribute significantly to the progression of Alzheimers disease. Granulocyte colony-stimulating factor (G-CSF) is an anti-inflammatory immunomodulator, but the mechanism of its anti-inflammatory effect is unclear. This study was designed to investigate whether G-CSF could inhibit inflammation in a mouse model of Alzheimers disease through an α7 nicotinic acetylcholine receptor (α7 nAChR) pathway. Mice transgenic for the V171I mutant amyloid precursor protein (APP) were injected subcutaneously with G-CSF 50 μg/kg per day or phosphate-buffered saline (PBS; control group) for 7 days, and wild-type C57/BL6 mice were injected with PBS daily for 7 days. Mice were killed on days 7, 14 and 28 after treatment began. Levels of α7 nAChR protein were significantly increased and levels of interleukin-1β, tumour necrosis factor-α and nuclear factor-κB (NF-κB) protein were significantly decreased in the brain of APP transgenic mice in response to G-CSF. Levels of α7 nAChR protein correlated negatively with NF-κB levels. It is concluded that G-CSF might attenuate inflammation by down-regulating NF-κB and up-regulating α7 nAChR in the brain of APP transgenic mice, indicating a potential new therapeutic approach to Alzheimers disease.
Clinical and Experimental Medicine | 2016
Zhaohong Xie; Zhen Liu; Xiao-Ran Zhang; Hui Yang; LiFei Wei; Yun Wang; Shunliang Xu; Lin Sun; Chao Lai; Jianzhong Bi; Xiao-Yun Wang
Alzheimer’s disease (AD) is the leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Cumulative evidence supports that neuroinflammation is an important factor for the pathogenesis of AD and contributes to amyloid beta (Aβ) generation. However, there has been no effective treatment for AD. Wharton’s Jelly-derived mesenchymal stem cells (WJ-MSCs) have a potential therapeutic effect in the treatment for neurological diseases. In the present study, we evaluated the therapeutic effect of WJ-MSC transplantation on the neuropathology and memory deficits in amyloid precursor protein (APP) and presenilin-1 (PS1) double-transgenic mice and discussed the mechanism. WJ-MSCs were intravenously transplanted into the APP/PS1 mice. Four weeks after treatment, WJ-MSCs significantly improved the spatial learning and alleviated the memory decline in the APP/PS1 mice. Aβ deposition and soluble Aβ levels were significantly reduced after WJ-MSC treatment. Furthermore, WJ-MSCs significantly increased the expression of the anti-inflammatory cytokine, IL-10. Meanwhile, pro-inflammatory microglial activation and the expressions of pro-inflammatory cytokines, IL-1β and TNFα, were significantly down-regulated by WJ-MSC treatment. Thus, our findings suggest that WJ-MSCs might produce beneficial effects on the prevention and treatment for AD through modulation of neuroinflammation.
Neuroscience Letters | 2013
Hongna Yang; Tingyu Qu; Hui Yang; LiFei Wei; Zhaohong Xie; Ping Wang; Jianzhong Bi
The peptide amphiphile (PA) with a laminin epitope IKVAV (IKVAV-PA) can be trigged into three-dimensional nanostructures in vivo. Application of IKVAV-PA to the injured spinal cord resulted in significant functional improvement in rodents with remarkable axonal regeneration at the lesion site. Here we showed that injection of IKVAV-PA into the hippocampus of a transgenic (Tg) mice model of Alzheimers disease (AD) significantly improved cognitive impairment, accompanied by an enhanced neurogenesis in the hippocampus. Further examination demonstrated that IKVAV-PA injections also significantly reduced the levels of soluble Aβ1-40, Aβ1-42, and amyloid-beta (Aβ) plaques in these brains. Our data suggest that IKVAV-PA may serve as a potential therapeutic intervention for the learning and memory losses in AD.
PLOS ONE | 2014
XiaoLei Zheng; Zhaohong Xie; Zhengyu Zhu; Zhen Liu; Yun Wang; LiFei Wei; Hui Yang; Hongna Yang; Yiqing Liu; Jianzhong Bi
Alzheimers disease (AD) is a chronic progressive neurodegenerative disorder. As the most common form of dementia, it affects more than 35 million people worldwide and is increasing. Excessive extracellular deposition of amyloid-β peptide (Aβ) is a pathologic feature of AD. Accumulating evidence indicates that macroautophagy is involved in the pathogenesis of AD, but its exact role is still unclear. Although major findings on the molecular mechanisms have been reported, there are still no effective treatments to prevent, halt, or reverse Alzheimers disease. In this study, we investigated whether Aβ25–35 could trigger an autophagy process and inhibit the growth of SH-SY5Y cells. Furthermore, we examined the effect of methyllycaconitine (MLA) on the cytotoxity of Aβ25–35. MLA had a protective effect against cytotoxity of Aβ, which may be related to its inhibition of Aβ-induced autophagy and the involvement of the mammalian target of rapamycin pathway. Moreover, MLA had a good safety profile. MLA treatment may be a promising therapeutic tool for AD.
Journal of Alzheimer's Disease | 2012
LiFei Wei; Hui Yang; Zhaohong Xie; ShaoNan Yang; Hongna Yang; CuiPing Zhao; Ping Wang; Shunliang Xu; Jun-Ying Miao; Bao-Xiang Zhao; Jianzhong Bi
Excessive extracellular deposition of amyloid- peptide (Aβ) in the brain is the pathological hallmark of Alzheimers disease (AD). Cumulative evidence indicates that autophagy is involved in the metabolism of Aβ and pathogenesis of AD. However, the molecular mechanism underlying the pathogenesis of AD is not yet well defined, and there has been no effective treatment for AD. We recently found that long-term treatment with a butyrolactone derivative 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran- 2(3 H)-one (3BDO) increased levels of insulin-degrading enzyme and neprilysin, suppressed autophagy via an mTOR pathway, lowered levels of Aβ, and prevented AD-like cognitive deficits in the AβPP/PS1 double transgenic mouse model. Therefore, our findings suggest that 3BDO may be beneficial in the prevention and treatment of AD.
Neurological Research | 2015
Hongna Yang; Hongling Yang; Zhaohong Xie; Ping Wang; Jianzhong Bi
Abstract Background: Alzheimer’s disease (AD) is one of the most common dementia, which is not effectively cured to date. Amyloid-beta (Abeta) deposition cascade and disintegrity of brain extracellular matrix (ECM) scaffold attribute to the progress of AD. Thus, it maybe an effective way to treat AD by altering the processing of amyloid precursor protein (APP) and regaining the integrity of ECM. The peptide amphiphile (PA) with a laminin epitope isoleucine–lysine–valine–alanine–valine (IKVAV) (IKVAV-PA) can be trigged into ECM in vivo. In addition, IKVAV-PA could significantly improve cognitive impairment with remarkable increase of endoneurogensis in the hippocampus, as well as reduction of burden of amyloid plaque in the brain. Methods: We used heterozygous AbetaPPswe/PS1dE9 double transgenic mice as the animal model of AD. After 1 week of initial stereotaxic administration into bilateral hippocampus, the mice were subjected to the Morris Water Maze (MWM) test. At the end of MWM test, immunohistochemical staining, Western blot and real-time polymerase chain reaction (PCR) were performed in mice. Results: Here we showed that IKVAV-PA significantly improved cognitive impairment accompanying with reducing the burden of Abeta plaques, as well as the levels of soluble Abeta1-40 and Abeta1-42 in the cortex and hippocampus after 2 weeks of initial administration into bilateral hippocampus. Further examination demonstrated that IKVAV-PA also altered the processing of APP via inhibiting the gene expression of beta-secretase (BACE1), as well as improving the gene expression of insulin-degrading enzyme (IDE) and neprilysin (NEP). Conclusion: Our data suggest that IKVAV-PA may serve as an alternative therapeutic intervention for treating the learning and memory losses in AD.
Canadian Journal of Neurological Sciences | 2013
Yun Wang; Shunliang Xu; Zhen Liu; Chao Lai; Zhaohong Xie; CuiPing Zhao; Yan Wei; Jian Zhong Bi
BACKGROUND Polymorphisms of genes participating in iron transportation have been associated with Alzheimers disease (AD) risk. The association between transferrin (TF) gene rs1049296 (P570S) polymorphism and AD is controversial. METHODS We performed meta analysis on data from 19 studies with 6310 cases and 13661 controls to reexamine the association between the TF gene rs1049296 polymorphism and AD. We applied a fixed-effects model to combine the odds ratio (OR) and 95% confidence intervals (95% CI). Eggers test was carried out to evaluate the potential publication bias. RESULTS The overall ORs with 95% CIs showed statistical association between the TF gene rs1049296 polymorphism and the risk of AD in the allele contrast, the recessive model and the dominant model for allele C2 (fixed-effects pooled OR 1.11; 95% CI 1.05 to 1.17, pooled OR 1.13; 95% CI 1.06 to 1.21, and pooled OR 1.23; 95% CI 1.03 to 1.47, respectively). In the contrast of C2C2+C2C1 vs C1C1, large heterogeneity among the Asian subgroup (p=0.041, I2= 68.6%) was observed but not among the overall population (p = 0.184, I2= 22.4%). No publication bias was observed. CONCLUSIONS The present meta analysis demonstrated that TF gene rs1049296 polymorphism is a genetic determinant of AD.
Neuroreport | 2017
Linlin Xu; Yang Shen; Xiao Wang; LiFei Wei; Ping Wang; Hui Yang; Cunfu Wang; Zhaohong Xie; Jianzhong Bi
Increasing research suggests that mitochondrial defects play a major role in Alzheimer’s disease (AD) pathogenesis. We aimed to better understand changes in mitochondria with the development and progression of AD. We compared APPsw/PS1dE9 transgenic mice at 3, 6, 9, and 12 months old as an animal model of AD and age-matched C57BL/6 mice as controls. The learning ability and spatial memory ability of APPsw/PS1dE9 mice showed significant differences compared with controls until 9 and 12 months. Mitochondrial morphology was altered in hippocampus tissue of APPsw/PS1dE9 mice beginning from the third month. ‘Medullary corpuscle’, which is formed by the accumulation of a large amount of degenerative and fragmented mitochondria in neuropils, may be the characteristic change observed on electron microscopy at a late stage of AD. Moreover, levels of mitochondrial fusion proteins (optic atrophy 1 and mitofusin 2) and fission proteins (dynamin-related protein 1 and fission 1) were altered in transgenic mice compared with controls with progression of AD. We found increased levels of fission and fusion proteins in APP/PS1 mice at 3 months, indicating that the presence of abnormal mitochondrial dynamics may be events in early AD progression. Changes in mitochondrial preceded the onset of memory decline as measured by the modified Morris water maze test. Abnormal mitochondrial dynamics could be a marker for early diagnosis of AD and monitoring disease progression. Further research is needed to study the signaling pathways that govern mitochondrial fission/fusion in AD.