Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhaolong Li is active.

Publication


Featured researches published by Zhaolong Li.


Journal of Virology | 2014

Cellular Requirements for Bovine Immunodeficiency Virus Vif-Mediated Inactivation of Bovine APOBEC3 Proteins

Wenyan Zhang; Hong Wang; Zhaolong Li; Xin Liu; Guanchen Liu; Reuben S. Harris; Xiao Fang Yu

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) viral infectivity factor (Vif) form a CRL5 E3 ubiquitin ligase complex to suppress virus restriction by host APOBEC3 (A3) proteins. The primate lentiviral Vif complex is composed of the unique cofactor core binding factor β (CBF-β) and canonical ligase components Cullin 5 (CUL5), Elongin B/C (ELOB/C), and RBX2. However, the mechanism by which the Vif protein of the related lentivirus bovine immunodeficiency virus (BIV) overcomes its host A3 proteins is less clear. In this study, we show that BIV Vif interacts with Cullin 2 (CUL2), ELOB/C, and RBX1, but not with CBF-β or CUL5, to form a CRL2 E3 ubiquitin ligase and degrade the restrictive bovine A3 proteins (A3Z2Z3 and A3Z3). RNA interference-mediated knockdown of ELOB or CUL2 inhibited BIV Vif-mediated degradation of these A3 proteins, whereas knockdown of CUL5 or CBF-β did not. BIV Vif with mutations in the BC box (Vif SLQ-AAA) or putative VHL box (Vif YI-AA), which cannot interact with ELOB/C or CUL2, respectively, lost the ability to counteract bovine A3 proteins. Moreover, CUL2 and UBE2M dominant negative mutants competitively inhibited the BIV Vif-mediated degradation mechanism. Thus, although the general strategy for inhibiting A3 proteins is conserved between HIV-1/SIV and BIV, the precise mechanisms can differ substantially, with only the HIV-1/SIV Vif proteins requiring CBF-β as a cofactor, HIV-1/SIV Vif using CUL5-RBX2, and BIV Vif using CUL2-RBX1. IMPORTANCE Primate lentivirus HIV-1 and SIV Vif proteins form a ubiquitin ligase complex to target host antiviral APOBEC3 proteins for degradation. However, the mechanism by which the nonprimate lentivirus BIV Vif inhibits bovine APOBEC3 proteins is unclear. In the present study, we determined the mechanism for BIV Vif-mediated degradation of bovine APOBEC3 proteins and found that it differs from the mechanism of HIV-1/SIV Vif by being CBF-β independent and requiring different ubiquitin ligase scaffolding proteins (CUL2-RBX1 instead of CUL5-RBX2). BIV Vif is the only known retroviral protein that can interact with CUL2. This information broadens our understanding of the distinct mechanisms by which the Vif proteins of different lentiviruses facilitate viral infection. This novel mechanism for assembly of the BIV Vif-APOBEC3 ubiquitin ligase complex advances our understanding of viral hijacking of host E3 ubiquitin ligases and illustrates the evolutionary flexibility of lentiviruses.


Cell Cycle | 2015

Enterovirus 71 mediates cell cycle arrest in S phase through non-structural protein 3D

Jinghua Yu; Liying Zhang; Peiyou Ren; Ting Zhong; Zhaolong Li; Zengyan Wang; Jingliang Li; Xin Liu; Ke Zhao; Wenyan Zhang; Xiao Fang Yu

Many viruses disrupt the host cell cycle to facilitate their own growth. We assessed the mechanism and function of enterovirus 71 (EV71), a primary causative agent for recent hand, foot, and mouth disease outbreaks, in manipulating cell cycle progression. Our results suggest that EV71 infection induces S-phase arrest in diverse cell types by preventing the cell cycle transition from the S phase into the G2/M phase. Similar results were observed for an alternate picornavirus, Coxsackievirus A16. Synchronization in S phase, but not G0/G1 phase or G2/M phase, promotes viral replication. Consistent with its ability to arrest cells in S phase, the expression of cyclin A2, CDK 2, cyclin E1, and cyclin B1 was regulated by EV71 through increasing transcription of cyclin E1, promoting proteasome-mediated degradation of cyclin A2 and regulating the phosphorylation of CDK 2. Finally, a non-structural protein of EV71, the RNA-dependent RNA polymerase 3D, was demonstrated to mediate S-phase cell cycle arrest. These findings suggest that EV71 induces S-phase cell cycle arrest in infected cells via non-structural protein 3D, which may provide favorable conditions for virus production.


BMC Microbiology | 2014

Requirement of HIV-1 Vif C-terminus for Vif-CBF-β interaction and assembly of CUL5-containing E3 ligase

Hong Wang; Guoyue Lv; Xiaohong Zhou; Zhaolong Li; Xin Liu; Xiao Fang Yu; Wenyan Zhang

BackgroundHuman immunodeficiency virus type 1 (HIV-1) Vif hijacks an E3 ligase to suppress natural APOBEC3 restriction factors, and core binding factor β (CBF-β) is required for this process. Although an extensive region of Vif spanning most of its N-terminus is known to be critical for binding with CBF-β, involvement of the Vif C-terminus in the interaction with CBF-β has not been fully investigated.ResultsHere, through immunoprecipitation analysis of Vif C-terminal truncated mutants of various lengths, we identified that CBF-β binding requires not only certain amino acids (G126A, E134A, Y135A and G138A) in the HCCH region but also the HCCH motif itself, which also affects the Vif-mediated suppression of APOBEC3G/APOBEC3F (A3G/A3F). These mutants still maintained interactions with substrate A3G or A3F as well as other cellular factors ElonginB/C (ELOB/C), indicating that their structures were not functionally affected. Moreover, by determining that the BC box also is necessary for CBF-β interaction in vivo, we speculate that binding to ELOB/C induces conformational changes in Vif, facilitating its interaction with CBF-β and consequent interaction with CUL5.ConclusionsThese results provide important information on the assembly of the Vif-CUL5-E3 ubiquitin ligase. Identification of the new binding interface with CBF-β at the C-terminus of HIV-1 Vif also provides novel targets for the development of HIV-1 inhibitors.


Journal of Medical Virology | 2017

Prevailing genotype distribution and characteristics of human respiratory syncytial virus in northeastern China

Yuxuan Zheng; Li Liu; Shaohua Wang; Zhaolong Li; Min Hou; Jingliang Li; Xiao Fang Yu; Wenyan Zhang; Shucheng Hua

Although human respiratory syncytial virus (RSV) is one of the most common viruses inducing respiratory tract infections in young children and the elderly, the genotype distribution and characteristics of RSV in northeastern China have not been investigated. Here, we identified 25 RSV‐A and 8 RSV‐B strains from 80 samples of patients with respiratory infections between February 2015 and May 2015. All 25 RSV‐A viruses were classified as the ON1 genotype, which rapidly spread and became the dominant genotype in the world since being identified in Ontario (Canada) in December 2010. All eight RSV‐B viruses belonged to the BA genotype with a 60‐nucleotide duplication, seven of which formed two new genotypes, BA‐CCA and BA‐CCB. The remaining RSV‐B virus clustered with one of the Hangzhou strains belonging to genotype BA11. Construction of a phylogenetic tree and amino acid substitution analysis showed that Changchun ON1 viruses exclusively constituted Lineages 3, 5 and 6, and contained several unique and newly identified amino acid substitutions, including E224G, R244K, L289I, Y297H, and L298P. Selective pressure was also evaluated, and various N and O‐glycosylation sites were predicted. This study provides the first genetic analysis of RSV in northeastern China and may facilitate a better understanding of the evolution of this virus locally and globally. J. Med. Virol. 89:222–233, 2017.


PLOS ONE | 2014

Identification of HIV-1 Vif regions required for CBF-β interaction and APOBEC3 suppression.

Hong Wang; Bin Liu; Xin Liu; Zhaolong Li; Xiao Fang Yu; Wenyan Zhang

Human immunodeficiency virus type 1 (HIV-1) Vif requires core binding factor β (CBF-β) to degrade the host APOBEC3 restriction factors. Although a minimum domain and certain amino acids of HIV-1 Vif, including hydrophobic residues at the N-terminal, have been identified as critical sites for binding with CBF-β, other regions that potentially mediate this interaction need to be further investigated. Here, we mapped two new regions of HIV-1 Vif that are required for interaction with CBF-β by generating a series of single-site or multiple-site Vif mutants and testing their effect on the suppression of APOBEC3G (A3G) and APOBEC3F (A3F). A number of the mutants, including G84A/SIEW86-89AAAA (84/86–89), E88A/W89A (88/89), G84A, W89A, L106S and I107S in the 84GxSIEW89 and L102ADQLI107 regions, affected Vif function by disrupting CBF-β binding. These Vif mutants also had altered interactions with CUL5, since CBF-β is known to facilitate the binding of Vif to CUL5. We further showed that this effect was not due to misfolding or conformational changes in Vif, as the mutants still maintained their interactions with other factors such as ElonginB, A3G and A3F. Notably, G84D and D104A had stronger effects on the Vif-CUL5 interaction than on the Vif-CBF-β interaction, indicating that they mainly influenced the CUL5 interaction and implying that the interaction of Vif with CUL5 contributes to the binding of Vif to CBF-β. These new binding interfaces with CBF-β in HIV-1 Vif provide novel targets for the development of HIV-1 inhibitors.


Scientific Reports | 2016

Identification of a nucleotide in 5′ untranslated region contributing to virus replication and virulence of Coxsackievirus A16

Zhaolong Li; Xin Liu; Shaohua Wang; Jingliang Li; Min Hou; Guanchen Liu; Wenyan Zhang; Xiao Fang Yu

Coxsackievirus A16 (CA16) and enterovirus 71 (EV71) are two main causative pathogens of hand, foot and mouth disease (HFMD). Unlike EV71, virulence determinants of CA16, particularly within 5′ untranslated region (5′UTR), have not been investigated until now. Here, a series of nucleotides present in 5′UTR of lethal but not in non-lethal CA16 strains were screened by aligning nucleotide sequences of lethal circulating Changchun CA16 and the prototype G10 as well as non-lethal SHZH05 strains. A representative infectious clone based on a lethal Changchun024 sequence and infectious mutants with various nucleotide alterations in 5′UTR were constructed and further investigated by assessing virus replication in vitro and virulence in neonatal mice. Compared to the lethal infectious clone, the M2 mutant with a change from cytosine to uracil at nucleotide 104 showed weaker virulence and lower replication capacity. The predicted secondary structure of the 5′UTR of CA16 RNA showed that M2 mutant located between the cloverleaf and stem-loop II, affected interactions between the 5′UTR and the heterogeneous nuclear ribonucleoprotein K (hnRNP K) and A1 (hnRNP A1) that are important for translational activity. Thus, our research determined a virulence-associated site in the 5′UTR of CA16, providing a crucial molecular target for antiviral drug development.


PLOS ONE | 2014

Coxsackievirus A16 Infection Induces Neural Cell and Non-Neural Cell Apoptosis In Vitro

Zhaolong Li; Jinghua Yu; Li Liu; Zhenhong Wei; Elana S. Ehrlich; Guanchen Liu; Jingliang Li; Xin Liu; Hong Wang; Xiao Fang Yu; Wenyan Zhang

Coxsackievirus A16 (CA16) is one of the main causative pathogens of hand, foot and mouth disease (HFMD). Viral replication typically results in host cell apoptosis. Although CA16 infection has been reported to induce apoptosis in the human rhabdomyosarcoma (RD) cell line, it remains unclear whether CA16 induces apoptosis in diverse cell types, especially neural cells which have important clinical significance. In the current study, CA16 infection was found to induce similar apoptotic responses in both neural cells and non-neural cells in vitro, including nuclear fragmentation, DNA fragmentation and phosphatidylserine translocation. CA16 generally is not known to lead to serious neurological symptoms in vivo. In order to further clarify the correlation between clinical symptoms and cell apoptosis, two CA16 strains from patients with different clinical features were investigated. The results showed that both CA16 strains with or without neurological symptoms in infected patients led to neural and muscle cell apoptosis. Furthermore, mechanistic studies showed that CA16 infection induced apoptosis through the same mechanism in both neural and non-neural cells, namely via activation of both the mitochondrial (intrinsic) pathway-related caspase 9 protein and the Fas death receptor (extrinsic) pathway-related caspase 8 protein. Understanding the mechanisms by which CA16 infection induces apoptosis in both neural and non-neural cells will facilitate a better understanding of CA16 pathogenesis.


Journal of Virology | 2017

Inhibition of Vpx-Mediated SAMHD1 and Vpr-Mediated Host Helicase Transcription Factor Degradation by Selective Disruption of Viral CRL4 (DCAF1) E3 Ubiquitin Ligase Assembly

Hong Wang; Haoran Guo; Jiaming Su; Yajuan Rui; Wenwen Zheng; Wenying Gao; Wenyan Zhang; Zhaolong Li; Guanchen Liu; Richard B. Markham; Wei Wei; Xiao Fang Yu

ABSTRACT The lentiviral accessory proteins Vpx and Vpr are known to utilize CRL4 (DCAF1) E3 ligase to induce the degradation of the host restriction factor SAMHD1 or host helicase transcription factor (HLTF), respectively. Selective disruption of viral CRL4 (DCAF1) E3 ligase could be a promising antiviral strategy. Recently, we have determined that posttranslational modification (neddylation) of Cullin-4 is required for the activation of Vpx-CRL4 (DCAF1) E3 ligase. However, the mechanism of Vpx/Vpr-CRL4 (DCAF1) E3 ligase assembly is still poorly understood. Here, we report that zinc coordination is an important regulator of Vpx-CRL4 E3 ligase assembly. Residues in a conserved zinc-binding motif of Vpx were essential for the recruitment of the CRL4 (DCAF1) E3 complex and Vpx-induced SAMHD1 degradation. Importantly, altering the intracellular zinc concentration by treatment with the zinc chelator N,N,N′-tetrakis-(2′-pyridylmethyl)ethylenediamine (TPEN) potently blocked Vpx-mediated SAMHD1 degradation and inhibited wild-type SIVmac (simian immunodeficiency virus of macaques) infection of myeloid cells, even in the presence of Vpx. TPEN selectively inhibited Vpx and DCAF1 binding but not the Vpx-SAMHD1 interaction or Vpx virion packaging. Moreover, we have shown that zinc coordination is also important for the assembly of the HIV-1 Vpr-CRL4 E3 ligase. In particular, Vpr zinc-binding motif mutation or TPEN treatment efficiently inhibited Vpr-CRL4 (DCAF1) E3 ligase assembly and Vpr-mediated HLTF degradation or Vpr-induced G2 cell cycle arrest. Collectively, our study sheds light on a conserved strategy by the viral proteins Vpx and Vpr to recruit host CRL4 (DCAF1) E3 ligase, which represents a target for novel anti-human immunodeficiency virus (HIV) drug development. IMPORTANCE The Vpr and its paralog Vpx are accessory proteins encoded by different human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) lentiviruses. To facilitate viral replication, Vpx has evolved to induce SAMHD1 degradation and Vpr to mediate HLTF degradation. Both Vpx and Vpr perform their functions by recruiting CRL4 (DCAF1) E3 ligase. In this study, we demonstrate that the assembly of the Vpx- or Vpr-CRL4 E3 ligase requires a highly conserved zinc-binding motif. This motif is specifically required for the DCAF1 interaction but not for the interaction of Vpx or Vpr with its substrate. Selective disruption of Vpx- or Vpr-CRL4 E3 ligase function was achieved by zinc sequestration using N,N,N′-tetrakis-(2′-pyridylmethyl)ethylenediamine (TPEN). At the same time, zinc sequestration had no effect on zinc-dependent cellular protein functions. Therefore, information obtained from this study may be important for novel anti-HIV drug development.


Journal of Virology | 2017

Conserved interaction of lentiviral Vif molecules with HIV-1 Gag and differential effects of species-specific Vif on virus production.

Wenwen Zheng; Limian Ling; Zhaolong Li; Hong Wang; Yajuan Rui; Wenying Gao; Shaohua Wang; Xing Su; Wei Wei; Xiao Fang Yu

ABSTRACT The virion infectivity factor (Vif) open reading frame is conserved among most lentiviruses. Vif molecules contribute to viral replication by inactivating host antiviral factors, the APOBEC3 cytidine deaminases. However, various species of lentiviral Vif proteins have evolved different strategies for overcoming host APOBEC3. Whether different species of lentiviral Vif proteins still preserve certain common features has not been reported. Here, we show for the first time that diverse lentiviral Vif molecules maintain the ability to interact with the human immunodeficiency virus type 1 (HIV-1) Gag precursor (Pr55Gag) polyprotein. Surprisingly, bovine immunodeficiency virus (BIV) Vif, but not HIV-1 Vif, interfered with HIV-1 production and viral infectivity even in the absence of APOBEC3. Further analysis revealed that BIV Vif demonstrated an enhanced interaction with Pr55Gag compared to that of HIV-1 Vif, and BIV Vif defective for the Pr55Gag interaction lost its ability to inhibit HIV-1. The C-terminal region of capsid (CA) and the p2 region of Pr55Gag, which are important for virus assembly and maturation, were involved in the interaction. Transduction of CD4+ T cells with BIV Vif blocked HIV-1 replication. Thus, the conserved Vif-Pr55Gag interaction provides a potential target for the future development of antiviral strategies. IMPORTANCE The conserved Vif accessory proteins of primate lentiviruses HIV-1, simian immunodeficiency virus (SIV), and BIV all form ubiquitin ligase complexes to target host antiviral APOBEC3 proteins for degradation, with different cellular requirements and using different molecular mechanisms. Here, we demonstrate that BIV Vif can interfere with HIV-1 Gag maturation and suppress HIV-1 replication through interaction with the precursor of the Gag (Pr55Gag) of HIV-1 in virus-producing cells. Moreover, the HIV-1 and SIV Vif proteins are conserved in terms of their interactions with HIV-1 Pr55Gag although HIV-1 Vif proteins bind Pr55Gag less efficiently than those of BIV Vif. Our research not only sheds new light on this feature of these conserved lentiviral Vif proteins but also provides a formerly unrecognized target for the development of antiviral strategies. Since increasing the Vif-Pr55Gag interaction could potentially suppress virus proliferation, this approach could offer a new strategy for the development of HIV inhibitors.


Virology | 2018

Jembrana disease virus Vif antagonizes the inhibition of bovine APOBEC3 proteins through ubiquitin-mediate protein degradation

Xing Su; Hong Wang; Xiaohong Zhou; Zhaolong Li; Baisong Zheng; Wenyan Zhang

Viral infectivity factor (Vif) encoded by lentiviruses is essential for viral replication and escaping from antiviral activity of host defensive factors APOBEC3. Jembrana disease virus (JDV) causes an acute disease syndrome with approximately 20% case fatality rate in Bali cattle. However, the interplay mechanism between JDV Vif and Bos taurus APOBEC3 (btA3) is poorly understood. In this study, we determined that JDV Vif recruits ElonginB, ElonginC(ELOB/C), Cul2 and RBX1 but without the need of CBF-β to form E3 ubiquitin ligase and induces the degradation of btA3 proteins. Further investigation identified BC-box (T149LQ151) motif required for ELOB/C binding, Cul2 box (Y167xxxxV/X172) and a zinc-binding motif (H95-C113-H115-C133) required for Cul2 binding in JDV Vif. The precise mechanism of JDV Vif overcoming the antiviral activity of btA3 proteins is helpful for the application of the broad spectrum antiviral drug targeting conserved functional domains of various species Vif proteins in the future.

Collaboration


Dive into the Zhaolong Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao Fang Yu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge